Peter Sels^{1,2,3}, Thijs Dewilde¹, Dirk Cattrysse¹, Pieter Vansteenwegen¹

¹Katholieke Universiteit Leuven, Centre for Industrial Management/Traffic & Infrastructure, Celestijnenlaan 300a, 3001 Heverlee, Belgium

²Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> ³Infrabel, Department of Rail Access, Frankrijkstraat 91, 1070 Brussels, Belgium

> > December 5, 2013

Table of Contents

Business Problem

Task

2 Solution Process Flows

- Stochastic Action Model
- Stochastic Goal Function: Expected Passenger Transfer Time

- Grouping per Subsequent Action-Pair
- Grouping per Subsequent Action-Pair towards Cost
- 3 Knock-On Time Derivation
- 4 Knock-On Time Linearisation
- 5 Results
- 6 Conclusions & Future Work

Questions

Timetabling for Passengers: A Knock-On Delay Model Business Problem Task

Task

Belgian Infrastructure Management Company: Infrabel:

Add Knock-on Delays as a term to Expected Passenger Travel Time Goal Function

Goals:

Reduce Expected Passenger Time \Rightarrow Optimises Robustness

Fixed:

Infrastructure, Train Lines, Halting Pattern, Primary Delay Distributions

Variable:

Timing: Supplement Times at every Ride, Dwell, Transfer Action, \Rightarrow variable inter-Train Heading Times \Rightarrow variable Train Orders

Specifics:

One Busy Day, Morning Peak Hour

Timetabling for Passengers: A Knock-On Delay Model Solution Process Flows

Context: FAPESP: Two Phased

FAPESP

Figure: Two Phased implies Iterations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Graph for Reflowing: add Source & Sink Edges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Graph for Retiming: add Knock-On Edges & Cycles

Graph for Retiming: All Constraints

Timetabling for Passengers: A Knock-On Delay Model Solution Process Flows

Reflowing decides on Rectangle Heights Retime (=Timetabling) decides on Rectangle Widths

(a) Original Schedule

(b) Optimized Version

Solution Process Flows Stochastic Action Model

Action: Negative Exponential Delay Distribution

Solution Process Flows

Stochastic Goal Function: Expected Passenger Transfer Time

Stochastic Goal Function: Expected Passenger *Transfer* Time

Figure: D_0 is introduced supplement, $D_1 > D_0$ is delta time of next chance action. Curve maps planned time to expected time.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Timetabling for Passengers: A Knock-On Delay Model Solution Process Flows Grouping per Subsequent Action-Pair

Grouping per Subsequent Action-Pair

- departing = ride' + dwell' + source
- through = ride + dwell
- changing = ride + transfer
- arriving = ride + sink

Solution Process Flows

Grouping per Subsequent Action-Pair towards Cost

Grouping per Subsequent Action-Pair towards Cost

Solution Process Flows

Grouping per Subsequent Action-Pair towards Cost

In-Time and Over-Time

	In-Time	Over-Time
probability	$\int_0^{D_0} p_a(x) dx$	$\int_{D_0}^{D_1} p_a(x) dx$
inc./dec. in D_0	inc.	dec.
expected time	$\int_0^{D_0} p_a(x) D_0 dx$	$\int_{D_0}^{D_1} p_a(x) D_1 dx$
inc./dec. in D_0	inc.	dec.
departing = ride' + dwell' + source		\checkmark
through = ride + dwell	\checkmark	
changing = ride + transfer	\checkmark	\checkmark
arriving = ride + sink	\checkmark	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution Process Flows

Grouping per Subsequent Action-Pair towards Cost

Cost curves of 4 Passenger Categories

Primary Delay Distributions

$$p_i(x) = a_i e^{-a_i x}, p_j(y) = a_j e^{-a_j y},$$
 (1)

$$\overline{c_i} = \int_0^\infty x a_i e^{-a_i x} dx = \frac{1}{a_i}, \overline{c_j} = \int_0^\infty y a_j e^{-a_j y} dy = \frac{1}{a_j}.$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Knock-On Probability Derivation

Probability of knock-on delay

Integrate over 2 triangle areas where the delay difference

- $x \ge y + s_{i,j}$
- $y \ge x + s_{j,i}$

as in

$$p_{x \ge y+s_{i,j}}(a_i, a_j, s_{i,j}) = \int_0^\infty \int_{y+s_{i,j}}^\infty a_i e^{-a_i x} \cdot a_j e^{-a_j y} dx dy = \frac{a_j e^{-a_j s_{i,j}}}{a_i + a_j},$$

$$p_{y \ge x+s_{i,j}}(a_i, a_j, s_{j,i}) = \int_0^\infty \int_{x+s_{j,i}}^\infty a_i e^{-a_i x} \cdot a_j e^{-a_j y} dy dx = \frac{a_i e^{-a_j s_{j,i}}}{a_i + a_j}.$$
(3)

Knock-On (Train & Passenger) Time Derivation

Train Time Cost of knock-on delay

$$tKO_{i,j}(a_i, a_j, s_{i,j}) = \int_0^\infty \int_{y+s_{i,j}}^\infty \underbrace{a_i e^{-a_i x} \cdot a_j e^{-a_j y}}_{probability} \underbrace{(x-y-s_{i,j})}_{tko_{i,j} \ge 0} dxdy$$
$$= \frac{a_j e^{-a_i s_{i,j}}}{a_i(a_i+a_j)},$$
$$tKO_{j,i}(a_i, a_j, s_{j,i}) = \int_0^\infty \int_{x+s_{j,i}}^\infty \underbrace{a_i e^{-a_i x} \cdot a_j e^{-a_j y}}_{probability} \underbrace{(y-x-s_{j,i})}_{tko_{j,i} \ge 0} dydx$$
$$= \frac{a_i e^{-a_j s_{j,i}}}{a_j(a_i+a_j)}.$$
(4)

Passenger Time Cost of knock-on delay

$$pKO_{i,j}(a_i, a_j, s_{i,j}) = f_j \cdot tKO_{i,j} = f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i(a_i + a_j)},$$

$$pKO_{j,i}(a_i, a_j, s_{j,i}) = f_i \cdot tKO_{j,i} = f_i \cdot \frac{a_i e^{-a_j s_{j,i}}}{a_j(a_i + a_j)}.$$
(5)

Two Train Example: KO Formulas

$$h + s_{i,j} + h + s_{j,i} = T \text{ or equivalently } s_{j,i} = T - 2h - s_{i,j}.$$
(6)

$$0 = \frac{d}{ds_{i,j}} \left(pKO_{i,j} + pKO_{j,i} \right)$$

$$\Leftrightarrow 0 = \frac{d}{ds_{i,j}} \left(f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i (a_i + a_j)} + f_i \cdot \frac{a_i e^{-a_j (T - 2h - s_{i,j})}}{a_j (a_i + a_j)} \right)$$

$$\Leftrightarrow 0 = -f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i + a_j} + f_i \cdot \frac{a_j e^{-a_j (T - 2h - s_{i,j})}}{a_i + a_j}$$
(7)

$$\Leftrightarrow f_j \cdot a_j e^{-a_i s_{i,j}} = f_i \cdot a_i e^{-a_j (T - 2h - s_{i,j})} + a_i (s_{i,j})$$

$$\Leftrightarrow s_{i,j} = \frac{a_j (T - 2h) + \ln\left(\frac{f_j a_j}{f_i \cdot a_j}\right)}{a_i + a_j}$$

From symmetry:

$$s_{j,i} = \frac{a_i(T-2h) + ln\left(\frac{f_i a_i}{f_j a_j}\right)}{a_i + a_j}.$$
 (8)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two Train Example: Supplement Calculation

Two trains with:

- train i: expected delay of $1/a_i = 3$ minutes and $f_i = 100$ passengers
- train j: expected delay of $1/a_j = 1$ minute and $f_j = 300$ passengers
- T = 60 minutes, period
- h = 3 minutes, headway time

would be spread according to equations (7) and (8)

•
$$s_{i,j} = \frac{a_j(T-2h)+ln\left(\frac{f_ja_j}{f_ja_j}\right)}{a_i+a_j} = \frac{1(60-2\cdot3)+ln(300\cdot1/(100\cdot1/3))}{1/3+1} = 42.15$$
 min.
• $s_{j,i} = \frac{a_i(T-2h)+ln\left(\frac{f_ja_j}{f_ja_j}\right)}{a_i+a_j} = \frac{1/3(60-2\cdot3)+ln(100\cdot1/3/(300\cdot1))}{1/3+1} = 11.85$ min.

and indeed as equation (6) requires 42.15 + 3 + 11.85 + 3 = 60 minutes.

All Knock-On Costs for N(N - 1) Trains on Same Resource: Formula

$$\forall R : pKO_R = \sum_{\substack{i,j \in I_R \\ i \neq j}} f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i(a_i + a_j)}.$$
(9)

Is non-linear in $s_{i,j}$, but since we use convex minimisation \Rightarrow use trick:

$$\forall R: \forall_{\substack{i,j \in I_R \\ i \neq j}} : pKO_{R,i,j} \ge f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i(a_i + a_j)}.$$
(10)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Timetabling for Passengers: A Knock-On Delay Model Knock-On Time Linearisation

All Knock-On Costs for N(N - 1) Trains on Same Resource: Linearisation

$$\forall R : \forall_{i,j \in I_R} : \begin{cases} (s_{i,j,0}, ko_{i,j,0}) = (0, f_j \cdot \frac{a_j}{a_i(a_i + a_j)}) \\ (s_{i,j,1}, ko_{i,j,1}) = (T/15, f_j \cdot \frac{a_j e^{-a_j T/15}}{a_i(a_i + a_j)}) \\ (s_{i,j,2}, ko_{i,j,2}) = (T, f_j \cdot \frac{a_j e^{-a_i}}{a_i(a_i + a_j)}). \end{cases}$$
(11)

$$\forall R : \forall_{i,j \in I_R} : \begin{cases} pKO_{R,i,j} \geq ko_{i,j,0} + \frac{ko_{i,j,1} - ko_{i,j,0}}{s_{i,j,1} - s_{i,j,0}} \cdot (s_{i,j} - s_{i,j,0}) \\ pKO_{R,i,j} \geq ko_{i,j,1} + \frac{ko_{i,j,2} - ko_{i,j,1}}{s_{i,j,2} - s_{i,j,1}} \cdot (s_{i,j} - s_{i,j,1}) \end{cases}$$
(12)

Results: Flow * Duration Rectangle Representation

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Planned Time

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Expected Linear Time, as used in optimisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Expected Non-Linear Time, as used in evaluation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Expected Linear Time, as used in optimisation

Table: Increasing primary delays, characterised by their average of a% of min. dwell & ride times. Graph size: 203 hourly trains, 5355 ride, 5152 dwell, 17553 major transfer, 31696 knock-on and 166 turn-around edges. Model size: 42609 supplement decision variables, 49415 integer decision variables, 41128 goal function terms for major flows and 58441 evaluation function terms for all flows.

			major	major	major	all	all
	solver	MILP	flows	flows	flows non-	flows	flows non-
а	time	gap	linearised	linearised	linearised	linearised	linearised
			ko-time	time	time	time	time
			reduction	reduction	reduction	reduction	reduction
%	min.	%	%	%	%	%	%
2	95	76.2	57	8.66	7.06	1.71	0.42
4	43	71.0	52	6.61	4.42	0.84	-1.41
6	75	61.3	63	7.65	5.73	2.07	0.13
8	66	61.3	59	5.83	3.86	0.40	-1.61
2	112	72.6	66	10.58	9.19	2.54	1.31

Conclusions

- defined and implemented remapping, reflowing, retiming & iterations
- \bullet reflowing: obtains local passenger numbers \forall trains, \forall locations
- retiming
 - defined all necessary constraints & found
 - \Rightarrow respects (ride, dwell, transfer, headway)-minimum times
 - added some our particular cycle set
 - \Rightarrow solves model fast
 - defined stochastic passenger time goal function
 - derived & documented
 - Knock-On delay model for MILP timetable optmisation
 - \Rightarrow ideal order and headway of trains
 - \Rightarrow ideal passenger robustness
 - auto-generated first national timetable with full goal function = expected passenger time
 - reduction of passenger time with $\pm 7\%$, mind current assumptions:
 - primary delay = 2% of minimum-time, everywhere
 - zone-to-station-(overly?)-diffused passenger streams

Future Work

- further verification with new data
 - measured (place, train)-dependent delays i.o. averaged one
 - asymmetric station-OD?
- add spreading measure for alternative OD-routes and evaluate effect
- allow boundary timing conditions at frontiers/sub-zones
- output TPP problems to platformer
 - guarantee/increase chance on feasibility
 - add station capacity constraints to retiming
 - add constraints avoiding simultaneous arrival/departure of train pair that has to cross in station
 - adapt platformer so that it optimises for passengers i.o. maximising # trains platformed

Questions

- Your Questions?
 - www.LogicallyYours.com/Research/
 - sels.peter@gmail.com
- My Questions:
 - Is it best to use primary delays from the old timetable or to just assume them to be relative to minimum times?
 - If relative, what is the best (average(?)) percentage to assume for primary delays w.r.t minimum times?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで