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Business Problem
Task

Task

Belgian Infrastructure Management Company: Infrabel:

Add Knock-on Delays as a term to
Expected Passenger Travel Time Goal Function

Reduce Expected Passenger Time = Optimises Robustness

Infrastructure, Train Lines, Halting Pattern, Primary Delay Distributions

Variable:

Timing: Supplement Times at every Ride, Dwell, Transfer Action,
=> variable inter-Train Heading Times = variable Train Orders

One Busy Day, Morning Peak Hour
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Solution Process Flows

Context: FAPESP: Two Phased

FAPESP
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Figure: Two Phased implies Iterations
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Solution Process Flows

Graph for Reflowing: add Source & Sink Edges
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Solution Process Flows

Graph for Retiming: add Knock-On Edges & Cycles
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Solution Process Flows

Graph for Retiming: All Constraints

primary edges secondary edges cycles
ride
—~ O
knock on
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e=T-bor sum_e_in_cycle :
b+m+s=e b+m+s+ (d*T)=e e=T/2-bor sign_e_in_cycle *
(me+s e+ (d_e*T)=0

b(egin), m(inimum), s(upplement), e(nd), d(integer), T(period)
constants: m, T
variables: b, s, e, d
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Solution Process Flows

Reflowing decides on Rectangle Heights
Retime (=Timetabling) decides on Rectangle Widths

(b) Optimized Version
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Solution Process Flows
Stochastic Action Model

Action: Negative Exponential Delay Distribution

action
minimum  stochastic
time: delay time:
ma sa
— e
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ride action dwell action transfer action
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—— — e —_—
flow: f.r flow: f.d flow: £ tr
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Solution Process Flows

Stochastic Goal Function: Expected Passenger Transfer Time

Stochastic Goal Function: Expected Passenger Transfer
Time

Figure: Dy is introduced supplement, D; > Dy is delta time of next chance
action. Curve maps planned time to expected time.
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Solution Process Flows
Grouping per Subsequent Action-Pair

Grouping per Subsequent Action-Pair

@ departing = ride’ + dwell’ 4 source
@ through = ride + dwell

@ changing = ride + transfer

@ arriving = ride + sink

f_source 1

51'm2' s2' i s1 s2
I
T i f_sink

f_source l
s2
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Solution Process Flows

Grouping per Subsequent Action-Pair towards Cost

Grouping per Subsequent Action-Pair towards Cost

s2
f_source
1 f_sink
s2
domain = planning: domain = execution:
flows planned time cost = expected time

f_departing = f_source cost(s1'+ s2')

- s1 + m2+ s2 - )
- s1+m2+s2 - cost(s1+ s2)
f_arriving = f_sink

cost(s1+ s2
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Solution Process Flows
Grouping per Subsequent Action-Pair towards Cost

In-Time and Over-Time

In-Time Over-Time
probability fODO pa(x)dx fDDol pa(x)dx
inc./dec. in Do inc. dec.
expected time fODO pa(x)Dodx fg)l pa(x)Drdx
inc./dec. in Do inc. dec.
departing = ride’ + dwell’ + source v
through = ride + dwell v
changing = ride + transfer v v
arriving = ride + sink v
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Solution Process Flows
Grouping per Subsequent Action-Pair towards Cost

Cost curves of 4 Passenger Categories
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Knock-On Time Derivation

Primary Delay Distributions

pi(x) = aie™ ™, pj(y) = aje” ¥, (1)
> 1 ° 1
G = / xaje ¥¥dx = —,¢ = / yaje  Wdy = —. (2)
0 aj 0 aj
h=/3’ hj3’
\ 7 N |
T Z X Z vy T
Z 2
0_” Sj,i % Sij % Sj.i T

train i: train j:


http://www.wolframalpha.com/input/?i=Integral%28x+a+exp%28-a+x+%29%2C+0%2C+infty%29
http://www.wolframalpha.com/input/?i=Integral%28y+a+exp%28-a+y+%29%2C+0%2C+infty%29

Timetabling for Passengers: A Knock-On Delay Model
Knock-On Time Derivation

Knock-On Probability Derivation

Probability of knock-on delay

h=3’ h=3'
Y v
7 N
T Z X Z y T
7 Z
0” Sj,i f Sij f Sj.i T
train i: train j:
Integrate over 2 triangle areas where the delay difference
@ xXZ>y+s;
@ y>Xx+sj
as in
e ) = [0 4 a—aix . 5.a—3y _ aje
Px>y+s (@i aj,sij) = [y fy+s;,,- aje aje” % dxdy = e
R ol e a— X | 5. a—ajy _ ae W%
Py>xrs (303 50) = Joo fiis, 2i€ aje”* dydx = #2

(3)


http://www.wolframalpha.com/input/?_=1385411151482&i=integral_0%5einfty++integral_(y%2bs)%5einfty+a+exp(-a+x)+b+exp(-b+y)+dx+dy&fp=1&incTime=true
http://www.wolframalpha.com/input/?_=1385411151482&i=integral_0%5einfty++integral_(x%2bs)%5einfty+a+exp(-a+x)+b+exp(-b+y)+dy+dx&fp=1&incTime=true
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Knock-On Time Derivation

Knock-On (Train & Passenger) Time Derivation

Train Time Cost of knock-on delay

. .(3. . G- — aixX | 4.078Y _ G
tKO; j(aj, aj,sij) = fo fy+su X aje” W (x — y — sj ;) dxdy
probabilty tko; ;>0
_ e %
T ai(aita)’
. .5 . G — —aiX | 5.7y _ _ c. .
tKO; i(ai, aj, 55,1) = fo fx+s aie aje” ¥ (y — x — s,;) dydx
probability tkoj ;>0
_ a,ﬂe_afsfv"
T gi(aita)”

(4)

Passenger Time Cost of knock-on delay

TSI

PKO; (ai, aj,sij) = fj-tKOij =f;- 72@1?;’ (5)
e %%

pKO;i(ai,aj, ) = fi-tKO;; = fi - 5.


http://www.wolframalpha.com/input/?_=1385412479710&fp=1&i=integral_0%5einfty++integral_(x%2bs)%5einfty+a+exp(-a+x)+b+exp(-b+y)+(x-y-s)+dx+dy&incTime=true
http://www.wolframalpha.com/input/?_=1385412479710&fp=1&i=integral_0%5einfty++integral_(x%2bs)%5einfty+a+exp(-a+x)+b+exp(-b+y)+(y-x-s)+dy+dx&incTime=true
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Knock-On Time Derivation

Two Train Example:

KO Formulas

h+4sij+h+spi =T or equivalently s;; = T —2h —s; ;.

O =
<0

<0
.. 9. diSi,j
& f; - aje %S

fi-aj
= Sij

From symmetry:

Sj,i =

d £ ajefais/‘,j £ al_efaj(Tf%—si,j)
dsi; \J  ai(aj+aj) ! aj(ai+aj)
_f . ae T Ty ae=(T—2h=s; )

J ajtaj ! ajtaj

ﬁ_. a,'e_aj(T_Zh_s/"j)
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aj+aj

(T — 2h) + In (ﬁ;
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Knock-On Time Derivation

Two Train Example: Supplement Calculation

Two trains with:
@ train i: expected delay of 1/a; = 3 minutes and f; = 100 passengers
@ train j: expected delay of 1/a; = 1 minute and f; = 300 passengers
o T = 60 minutes, period
@ h = 3 minutes, headway time

would be spread according to equations (7) and (8)

BJ(T—Q”)JF’”(%) _ 1(60-2:3)+/n(300-1/(1001/3)) _ 45 15 min

@ Sij= ata; 1/3+1
(T—2h)+in( 52
05 = T »Hn(F2)  1/3(60-2:3)+in(100-1/3/(3001)) _ 11.85 mi
i = T = 75T = 11.85 min.

and indeed as equation (6) requires 42.15 + 3 + 11.85 + 3 = 60 minutes.



Timetabling for Passengers: A Knock-On Delay Model
Knock-On Time Linearisation

All Knock-On Costs for N(N — 1) Trains

on Same Resource: Formula

—aisi,j

aje
"’J_;eé(R i\di j
17

Is non-linear in s; ;, but since we use convex minimisation = use trick:

VRV KOp > -3¢ (10)
Vel | PKORij > - .
o YT ai(an+ )
k0i,j,0
koij,1 \
koij.2 sij
0 T/15 =sij1 T

=S8i,j.0 =Sij,2
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Knock-On Time Linearisation

All Knock-On Costs for N(N — 1) Trains

on Same Resource: Linearisation

koij0
Koij i
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= =sij2
.. .. — L. aj
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Results

Results: Flow * Duration Rectangle Representation
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Results

A Knock-On Delay Model

Planned Time
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Results

Expected Linear Time, as used in optimisation

B Ride(sup) O Dwell(sup) B Source(sup) D Transfer(sup) B Sink(sup) B KnockOn(sup)
| Ride(mi O Dwell(min) = in) @ Transfer(min) | Sink(min) m KnockOn(min)
7 3 4.55%
3 13.39% & 0.00% 0.97%
8 9.90%
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Results

Expected Non-Linear Time, as used in evaluation

B Ride(sup) O Dwellsup) B Source(sup) [ Transfer(sup) B Sink(sup) B KnockOn(sup)
| Ride(mi O Dwell(min) = in) @ Transfer(min) m Sink(min) m KnockOn(min)
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Results

Expected Linear Time, as used in optimisation

Table: Increasing primary delays, characterised by their average of a% of min.
dwell & ride times. Graph size: 203 hourly trains, 5355 ride, 5152 dwell, 17553
major transfer, 31696 knock-on and 166 turn-around edges. Model size: 42609
supplement decision variables, 49415 integer decision variables, 41128 goal
function terms for major flows and 58441 evaluation function terms for all flows.

major major major all all
solver MILP flows flows flows non- flows flows non-
a time gap linearised  linearised  linearised  linearised  linearised
ko-time time time time time

reduction  reduction reduction reduction reduction

% min. % % % % % %
2 95 76.2 57 8.66 7.06 1.71 0.42
4 43 71.0 52 6.61 4.42 0.84 -1.41
6 75 61.3 63 7.65 5.73 2.07 0.13
8 66 61.3 59 5.83 3.86 0.40 -1.61
2 112 72.6 66 10.58 9.19 2.54 1.31
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Conclusions & Future Work

Conclusions

@ defined and implemented remapping, reflowing, retiming & iterations

o reflowing: obtains local passenger numbers V trains, V locations

@ retiming

defined all necessary constraints & found
= respects (ride, dwell, transfer, headway)-minimum times
added some our particular cycle set
= solves model fast
defined stochastic passenger time goal function
o derived & documented
Knock-On delay model for MILP timetable optmisation
= ideal order and headway of trains
= ideal passenger robustness
auto-generated first national timetable with full goal function =
expected passenger time
reduction of passenger time with 7%, mind current assumptions:
o primary delay = 2% of minimum-time, everywhere
@ zone-to-station-(overly?)-diffused passenger streams
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Conclusions & Future Work

Future Work

o further verification with new data
o measured (place, train)-dependent delays i.o. averaged one
e asymmetric station-OD?
o add spreading measure for alternative OD-routes and evaluate
effect

@ allow boundary timing conditions at frontiers/sub-zones
@ output TPP problems to platformer

o guarantee/increase chance on feasibility
@ add station capacity constraints to retiming
o add constraints avoiding simultaneous arrival /departure of train pair
that has to cross in station
o adapt platformer so that it optimises for passengers i.o. maximising
# trains platformed
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Questions

@ Your Questions?
o www.LogicallyYours.com/Research/
o sels.peter@gmail.com
@ My Questions:
o Is it best to use primary delays from the old timetable or to just
assume them to be relative to minimum times?
o If relative, what is the best (average(?)) percentage to assume for
primary delays w.r.t minimum times?
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