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1. Introduction

Automatically generating cyclic timetables has been an active research area for some time

(Serafini and Ukovich, 1989; Schrijver, 1993; Odijk, 1996; Nachtigall, 1996; Goverde, 1999;

Peeters, 2003; Kroon et al., 2007; Liebchen, 2007), but the application of this research in practice

has been limited. We believe this is due to two reasons. Firstly, the current models do not

guarantee a feasible solution. Secondly, the resulting solution often contains some very high

time supplements because they do not influence the goal function directly. The reason is that

these goal functions do often not completely correspond to the true goal of a timetable.

We solve both problems by introduction of the goal function total passenger time, expected

in practice. Dewilde et al. (2011) give an overview of robustness definitions and conclude that

this function is the best criterium for optimisation of a timetable. Since this function evaluates

and indirectly steers all time related decision variables in the system, we do not need to further

restrict the ranges of any of these variables. This allows us to choose larger, more natural ranges

for them and makes that our model is always feasible. Furthermore, some measures are taken

to significantly speed up the computation time of our model. These combined features result

in our model being solved more quickly than previous models. We demonstrate our claims by

optimising, in about one hour only, the timetable of all 203 hourly passenger trains in Belgium.
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Assuming an expected primary delay of 2% on the minima of each action during peak hours, the

optimised timetable reduces expected passenger time by 7.47%.

2. Optimality: Model Goal Function

Our approach to optimise a timetable for passengers was first described in Sels et al. (2011).

It consists of the two steps we call reflowing and retiming. In the reflowing step we determine

the number of passengers in each train on each part of the network (Sels et al., 2011). This

information is used in the goal function for the retiming step. The goal function is the total

expected passenger time in practice as defined and analytically derived by Sels et al. (2013).

3. Feasibility & Computation Speed: Model Mandatory and Optional Constraints

Our full paper derives the mandatory constraints for our MILP model as given in Table 1 and

the optional, solver speed improving constraints in Table 2. Thanks to the natural, large ranges

of all decision variables, our model is always feasible. The notation used is defined in Table 4.

Table 1: Mandatory constraints, enforced to generate valid timetables. The notation used is described in Table 4.
intra-process constraints: ∀e ∈ E : be + me + se = ee

inter-process ∀o(e0)=i(e1)(e0, e1) ∈ (E′, E′ ∪ E′′) : ee0 = be1

connection constraints: ∀o(e0)=i(e1)(e0, e1) ∈ (E′′, E′) : ee0 + de0 · T = be1

continuous variable bounds: ∀e ∈ E : 0 ≤ se ≤ T − max(me, δ).
integer variable bounds: ∀e ∈ E′′ : (hlo − hhi) ≤ de ≤ (hhi − hlo)
all trains start in 1st hour: ∀¬∃id(e)e ∈ Er : hlo · T ≤ be < (hlo + 1) · T
passing supplements are 0: ∀¬s(e)e ∈ Ed : se = 0
separate same cd(hl; ru, rd, hr) = hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl)) :
direction trains ∃rd ∈ Er : rd = or(i(hl)) : ∃hr ∈ Ehw : hr = ehw(o(rd), o(ru)).
on the same open ∀cd(hl;ru,rd ,hr)hl ∈ Ehw : ((mhl + shl + dhl · T ) + (mru + sru )
track section: = (mhr + shr + dhr · T ) + (mrd + srd )) ∧ (dhl = dhr )
separate opposite cd(hl; ru, rd, hr) = hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl)) :
direction trains ∃rd ∈ Er : rd = or(i(hl)) : ∃hr ∈ Ehw : hr = ehw(o(rd), o(ru)).
on the same single ∀cd(hl;ru,rd ,hr)hl ∈ Ehw : ((mhl + shl + dhl · T ) + (mru + sru )
track section: +(mhr + shr + dhr · T ) + (mrd + srd ) = 0) ∧ (0 ≤ dhl + dhr ≤ 3)
forbid or allow cd(hl; du, dd, hr) = hl ≺ hl : ∃du ∈ Ed : du = od(o(hl)) :
overtaking ∃dd ∈ Ed : dd = od(i(hl)) : ∃hr ∈ Ehw : hr = ehw(o(dd), o(du)).
within a station ∀cd(hl;du,dd ,hr )h ∈ Ehw : ((mhl + shl + dhl · T ) + (mdu + sdu )
depending on = (mhr + shr + dhr · T ) + (mdd + sdd ))
infrastructure: ∧ (if (¬iao(du, dd)) : −0 ≤ dhl − dhr ≤ +0,
& halting patterns: else if (¬s(du) ∧ ¬s(dd)) : −0 ≤ dhl − dhr ≤ +0,

else if (s(du) ∧ ¬s(dd)) : −1 ≤ dhl − dhr ≤ +0,
else if (¬s(du) ∧ s(dd)) : −0 ≤ dhl − dhr ≤ +1,

else if (s(du) ∧ s(dd)) : −1 ≤ dhl − dhr ≤ +1)
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Table 2: Optional constraints, only enforced to lower solver time. The notation used is described in Table 4.
opposite transfers induced ∀t≺tt ∈ Etr : ((mt + st + dt · T ) + (mt + st + dt · T )
small cycles (hourglasses): = (mdu + sdu ) + (mdd + sdd )) ∧ (−1 ≤ dt + dt ≤ 0)
opposite cd(h; du, tu, dd, td) = h ≺ h : ∃du ∈ Ed : du = od(h) :
dwell-begin-headway ∃tu ∈ Etr : tu = etr(i(h), o(du)) :
induced small cycles ∃dd ∈ Ed : dd = od(h) : ∃td ∈ Etr : td = etr(o(h), o(dd)).
(forward triangles): ∀cd(h;du,tu,dd ,td)h ∈ Ehw : ((mh + sh + dh · T ) + (mdu + sdu )

= (mtu + stu + dtu · T )) ∧ (0 ≤ dtu − dh ≤ 1)
∧((mh + sh + dh · T ) + (mtd + std + dtd · T ) = (mdd + sdd ))

∧(−1 ≤ dtd + dh ≤ 0)
opposite cd(h; du, tu, dd, td) = h ≺ h : ∃du ∈ Ed : du = id(h) :
dwell-end-headway ∃tu ∈ Etr : tu = etr(i(du), i(h)) :
induced small cycles ∃dd ∈ Ed : dd = id(h) : ∃td ∈ Etr : td = etr(i(dd), o(h)).
(backward triangles): ∀cd(h;du,tu,dd ,td)h ∈ Ehw :

((mh + sh + dh · T ) + (mtu + stu + dtu · T )
= (mdu + sdu )) ∧ (−1 ≤ dtu + dh ≤ 0)
∧((mh + sh + dh · T ) + (mdd + sdd )

= (mtd + std + dtd · T )) ∧ (0 ≤ dtd − dh ≤ 1)
opposite headway ∀h≺hh ∈ Ehw : ((mh + sh + dh · T )
integer constraints: = −(mh + sh + dh · T )) ∧ (dh + dh = −1)
transfer induced ∀t ∈ Etr :

∑
e∈(c+

t ∩E′) me + se +
∑

e∈(c+
t ∩E′′) me + se + de · T

Dijkstra cycle constraints: =
∑

e∈(c−t ∩E′) me + se +
∑

e∈(c−t ∩E′′) me + se + de · T

4. Results

We constructed a model with all constraints shown in Tables 1 and 2 and the objective func-

tion derived in Sels et al. (2013), for all 203 hourly passenger train relations in Belgium departing

between 7 and 8am in the timetable of 13 March 2013 timetable. Table 3 shows the results of

our optimisations, which assume different primary delay distributions, controlled by the param-

eter a. Table 3 also shows, for the case a = 2%, that the optimised timetable further improves

when the MILP gap decreases, at the expense of more solver time. Compared to the original

timetable, our optimised timetables have quite some advantages. First, they respect all minimum

ride- and dwell-times. Second, they respect all headway time buffers of 3 minutes between all

train pairs on the same track section. Third, our calculations show that, (for a = 2%), the average

chance of missing a transfer in the current timetable is 14.1% while in our optimised timetable

(for gap = 75.9%), it is only 2.3%. The expected passenger time of this optimised schedule is

7.47% lower than in the original schedule. Fourth, generating our schedule only takes about one

hour, while it takes many human planners many months to generate the current timetable.

3



Table 3: Increasing primary delays, characterised by their average of a% of minimum dwell and ride times. The first
column shows a%. Column 2 and 3 show the computation time and the MILP gap achieved. We ran Gurobi 5.5.0 on
an Apple MacBook Pro with a 2.6GHz Intel i7 processor and 16GB 1600MHz DDR3 memory. For the first set of result
rows, the gap desired was set slightly above what was obtained as the gap of the first returned solution in earlier trials.
The results in the last row are obtained by reduction of the desired gap by 1% compared to the first row. Graph size:
203 hourly trains, 5355 ride, 5152 dwell, 17553 major transfer, 31696 knock-on(=headway) and 166 turn-around edges.
Model size: 42609 b and 42609 s decision variables. 42609 e expressions. 49415 d decision variables. 41128 goal
function terms for major flows.

major major all all missed
solver MILP flows flows non- flows flows non- transfer

a time gap linearised linearised linearised linearised probability
time time time time original optimised

reduction reduction reduction reduction
% min. % % % % % % %
2 53 75.9 9.15 7.47 3.39 1.68 14.1 2.3
4 63 70.7 6.92 5.03 1.33 -0.58 14.6 3.1
6 39 63.9 6.44 4.24 0.47 -1.76 15.1 1.8
8 66 61.3 4.49 2.29 -0.93 -3.16 15.6 4.4
2 114 74.8 9.79 7.95 3.62 1.71 14.1 2.5

5. Conclusions

Our full paper has the following main contributions. Firstly, our MILP model, unlike others,

is always feasible, so our system always returns a solution. This assumes that the number of trains

being scheduled do not exceed the available capacity. Naturally, any of our generated timetables

respects all minimal ride, dwell, transfer, headway and turn-around time rules. Secondly, our

goal function results in timetables with minimised expected passenger time, meaning the total

passenger journey time, including their ride, dwell and transfer actions, as well as the typical

primary delays and their consequential knock-on delays in practice are minimised. This means

our generated timetable is also both efficient and robust by construction. Thirdly, this timetable is

also quickly generated, in about one hour only. Fourthly, supposing primary delay distributions

with an average of 2% of minimum times of each ride and dwell action, our improved timetable

reduced expected passenger time for realistic passenger streams by 7.47%.

Finally, while in MILP modelling, restricting search space and using simplified goal func-

tions are the easier measures often taken to reduce solver times, we show that defining an all-

encompassing goal function and searching the full solution space can lead to more desirable

results: guaranteed feasibility, optimality and low solver times, even for hard problems.
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