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Abstract With our Periodic Event Scheduling Problem (PESP) based time-
tabling method, including the objective function of total expected passenger
journey time in practice, we are able to produce a passenger robust timetable
for all 88 hourly passenger trains in Denmark. This timetable reduces the
expected journey time of all Denmarks train passengers together by 2.9%
compared to the timetable defined by BaneDanmark as the timetable for a
general Wednesday in 2014. The computation of our timetable takes only 65
minutes.
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1 Introduction

We previously constructed a Periodic Event Scheduling Problem (PESP) based
model which has as objective function: the total expected passenger journey
time in practice over all passengers together [15]. In [2], the authors conclude
that, unlike to what is the case for some alternative definitions of robustness,
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this objective function is a practical method to obtain robustness and that the
obtained robustness is ideal for passengers.

In [15], Sels et al. applied this MIP model to the set of all 196 hourly trains
in Belgium. The main results were that a timetable, automatically generated in
about 2 hours, saves about 3.8% of total expected passenger journey time. This
timetable also significantly reduced the percentage of missed transfers from
13.9% to 2.6%. To study how generally applicable this model is to practice,
we now also test it on the set of all 88 hourly trains in Denmark.

2 Methodology and Assumptions

Our timetabling approach consists of the basic constraints of the popular PESP
model [16,11,9,3,4,10,5,7,6,1,17] over its standard event activity network. We
impose its classic constraints enforcing minimal ride times and minimal dwell
times. As described in detail in [12], we automatically construct all potential
transfers. By this, we mean that if two trains stop in the same station, a
transfer edge will be added between the arrival time of the feeder train and
the departure time of the target train. Currently, a minimum of 3 minutes
is assumed for each transfer. Headway edges and constraints are also auto-
matically constructed between entry times of each pair of trains that enter an
infrastructure resource and similarly also between all pairs of exit times. For
single track sections, between each leaving and each entering train, a similar
headway time constraint is imposed. The headway minimum time assumed on
this macroscopic level is 3 minutes. This summarises all hard constraints in
our model.

As described in detail in [13] and [14], our objective function consists of
the sum of the expected passenger time for each event activity network edge
that corresponds to a passenger action. So, for each ride, dwell and transfer
edge there is an expected passenger time. We express this expected passenger
time of an edge as a function of its minimum time and its added supplement
time. The shape of this function mainly depends on the expected primary delay
distribution and consequently, so does the supplement that should be ideally
added. The scale of this function depends on the number of passengers in-
volved. This indicates the relative importance of the expected passenger time
of one edge compared to that of another and is balanced by the objective func-
tion. For the primary delays, as do [8,3,18], we assume negative exponential
distributions with an average that can be set to a certain fixed percentage a
of the minimum time for that action. For now, we assume the same value of
a for all ride, dwell and transfer edges, for all trains and for all locations. The
value of a is typically chosen in the range of 1% to 5% [3].

For ride and dwell actions, the expected time, as a function of the added
ride and dwell supplement s, is almost the identity function f(s) = s. This is
logical, since for whatever supplement is added to a ride or dwell action, the
ride or dwell passengers just have to sit it through. So high values of s are not
beneficial to these passengers. At low values of s the slope of f(s) is a little
flatter because increasing a small supplement s by some supplementary seconds
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has more of a buffering effect against delays than increasing a supplement that
is already higher by the same amount. This is the case because small delays
occur more frequently than large delays.

For transfer actions, we model an expected transfer time that depends on
the chosen supplement for this transfer, on top of the minimum of 3 minutes.
If the supplement is low, the probability that the transfer is missed is high.
If the transfer is missed, we conservatively assume a penalty waiting time of
the timetable period, here 1 hour. If the supplement is high, the probability
of missing the transfer is low, but the transfer passenger will always have to
wait for a time equal to the supplement. The above means that the expected
passenger time for a transfer is a U-shaped function of the supplement. So
there is a trade-off and a locally optimal value for the transfer supplement.

As for secondary delays, or knock-on delays, our model already contains
the graph edges associated to these. Indeed, they are the same edges as the
headway edges, temporally separating pairs of trains that use the same in-
frastructure resource. So for each headway edge, we also add a term in the
objective function that represents the knock-on time or secondary delay that
passengers on the second train may experience in case the first train is delayed.
In our model, as derived in [14], this time depends on the delay distributions
of both trains and on the number of passengers on the second train. Obviously,
the total knock-on time is proportional to the number of passengers on the
second train. Also, the expected knock-on passenger time forms a decreasing
function of the train separating supplement s, since the higher the separation,
between two trains, the lower the expected knock-on delay.

This concludes our discussion of all expected passenger time components
that passengers will experience in reality. The objective function of our model
is the sum of all these. When minimising this function, a timetable with min-
imised total expected passenger time will result. Note that, often, there will be
competition between the terms in the objective function. For example, select-
ing a locally well balanced supplement on a transfer taken by a first group of
people may be ideal for them, but may cause another group of people dwelling
for somewhat longer on the target train of this transfer. Since all objective
function terms are expressed in units of people times time, the total objective
function fairly and properly balances costs and benefits of every supplement
choice in the network.

3 Results

For this project, Banedanmark started from the Danish timetable for an av-
erage Wednesday in 2014 and slightly adapted it so that it became exactly
periodical with one hour. This timetable contains 84 passenger trains and 4
freight trains. On the event activity network resulting from these trains, we
applied our passenger routing algorithm as described in [12] in order to obtain
the passenger number for every edge in the graph. Note that the freight trains
in our system start in a technical station that passengers do not have access to.
The freight trains also do not stop in passenger stations and so, in our routing
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algorithm, no passengers can get on or off these trains, as is the case in prac-
tice. Next we perform timetabling, according to the methodology described in
section 2, using the obtained local passenger numbers as fixed weights in the
objective function. Each of our timetabling models was tackled by the MILP
solver Gurobi version 6.0.0 on an Intel Xeon E31240 3.3GHz processor with
16GB of RAM. The results are shown in table 1.

Table 1 Results for different timetable optimisations of all 88 hourly Danish trains. req.
= required, obt.=obtained, exp. time = expected passenger time, red. = reduction, eval. =
evaluation, orig.tt = original timetable, opt.tt = optimised timetable, rd. + dw. t = ride +
dwell train time.

1 2 3 4 5 6 7 8 9

a
transfer gap gap solver exp. time missed transfers: planned

threshold req. obt. time red.eval. orig.tt opt.tt rd.+dw. t
(%) (%) (%) (s) (%) (%) (%) red.(%)

2 420 75 74.92 19421 1.67 11.34 2.07 -4.88
2 420 74 73.63 62417 1.96 11.34 5.21 -3.95

2 210 79 78.07 1534 0.82 11.34 2.83 -7.77
2 210 77 76.62 2436 1.59 11.34 3.20 -4.89
2 210 75 74.96 2924 2.45 11.34 1.12 -3.08
2 210 74 73.83 3922 2.90 11.34 2.45 -2.53
2 210 73 72.96 20726 3.16 11.34 2.07 -2.05

2 195 76 ≥76.8 ≥101000

Results for the different optimisations and their respective input parame-
ter values are ordered from less to more demanding from top to bottom. By
more demanding, we mean that either the required MIP gap (column 3) is
lower or the number of transfers considered in the optimisation is higher or
a combination of both. The transfer threshold (column 2) is the number of
people that are required as minimum for a transfer to be considered in the
optimisation.

We see that setting the transfer threshold to 420 makes that the solver
spends a lot of time (19421 and 62417 seconds) before it finds a solution
with an optimality gap below the required one. When the transfer threshold is
lowered to 210 transfer passengers, resulting in more transfers considered in the
optimisation, the model seems to become easier for Gurobi. When subsequently
also lowering the required gap from 79% to 74% (column 3), timetable solutions
are found within 1534 to 3922 seconds (column 5) and corresponding savings
of total expected passenger time increase from 0.82% to 2.90% (column 6).
Lowering the required gap further to 73% still improves the solution with a
total reduction of expected passenger time of 3.16%, however, the computation
time then increases significantly to 20726 seconds, being 5.76 hours.

So, we investigate whether, with a required gap of 76%, a better solution
could be obtained by lowering the transfer threshold. The last line of table 1
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shows that after 101000 seconds, no acceptable timetable solution was found
yet, since the solver is still at a gap of 76.8%.

Table 1 also mentions that the expected missed transfer probability is
11.34% (column 7) for the current timetable while not more than 2.45%
(1.12%, 2.45% and 2.07%, column 8) for our best three timetables. These
results were obtained by a post optimisation calculation on the obtained
timetables, where expected delays are accumulated and resulting in fractions
of missed and non-missed transfers.

For the best timetables found, the last column of table 1 mentions that
these possess between 3.08% and 2.05% more train weighted planned ride and
dwell time than the original timetable. Even then, the total passenger time is
reduced. This is possible due to a number of factors. Firstly, our method adds
supplements to trains but weighs them by passengers. Secondly, supplements
can cause extra robustness, so adding planned time can reduce experienced
time in practice. Thirdly, classical manual timetabling uses rules of thumb like
assigning a certain percentage of supplement to each train. To avoid knock-
on delays, we expect these rules to perform worse than our rule of assigning
supplements between each couple of trains sharing an infrastructure resource,
even more so since we do this proportionally with the number of passengers
on the second train and the expected delay distributions of both trains.

The resulting timetable was verified by Banedanmark by visual inspection
of space-time graphs per infrastructure line. No train collisions nor violations of
minimal headway times were found. Further verification of realistic parameter
settings like the value of a and the value of transfer minima is warranted for
fair comparison with the current timetable. Also verification of other timetable
quality criteria like the possible preference to avoid large inserted supplements,
even for actions with very few passengers, is required and ongoing.

4 Conclusion

This paper demonstrates that our PESP based method with the extension of
an objective function representing total expected passenger time in practice
improves the timetable for the whole train network of Danish passenger trains.
Total passenger time is reduced by 2.9% and transfers become significantly
more reliable. The fact that, after our successful application to the Belgian
train network, the application to a second country now delivers satisfying
results as well, indicates that our approach is quite generally useful.

Since the computation time for this timetable is only 65 minutes, this could
lead to huge time savings in the current timetabling practice which, for the
biggest part, is still carried out manually. Alternatively, the time spent on
manual timetabling now, can instead be used to create more alternative line
planning proposals which can be fed to our timetabling system. The line plan
leading to the optimised timetable with the lowest total expected passenger
time can then be selected. This would further improve passenger service.
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