Peter Sels^{1,2,3}, Dirk Cattrysse², Pieter Vansteenwegen²

¹Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> ²Katholieke Universiteit Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium

> ³Infrabel, Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

> > July 22nd 2015

Table of Contents

Optimising Timetables

- 2 Reflowing Results
- 3 Retiming Results
 - Deterministic Results
 - Stochastic Results
- 4 Conclusions & Future Work

5 Questions / Next Steps

Challenge / Puzzle

Danish Infrastructure Management Company: Banedanmark:

Improve timetable in terms of *expected passenger travel time* (includes: ride, dwell, transfer time and primary and secondary delays)

Fixed:

Infrastructure, train lines, halting pattern, primary delay distributions

Variable:

Timing: supplements times at every ride, dwell, transfer action, \Rightarrow variable inter-train heading times \Rightarrow variable train orders

Note:

Includes primary and secondary delays \Rightarrow opt. efficiency vs. robustness

Specifics:

One busy day, morning peak hour

Reflowing Results: via OD-Based Passenger Routing

Retiming Results

Deterministic Results

Retiming Results for Hard Constraints: Minimum Run Time Violations?

Table 1: Realisability. Reduction of the number and size of minimum runtime violations from timetable Orig. \rightarrow Opt.

time-	di	stribut	ion: #	action	s with	a violat	ion per :	size of v	violation	in secor	nds
table:	6s	12s	18s	24s	30s	36s	42s	48s	56s	60s	66s
Orig.	107	88	44	22	6	6	5	0	3	1	0
	72s	78s	84s	90s	96s	102s	108s	114s	120s	126s	132s
Orig.	2	0	0	0	1	0	1	0	0	1	1

Table 2: Realisability. Reduction (elimination) of total and average violation from timetable Orig. \rightarrow Opt.

timetable	weighted sum (s)	tot.#	avg. (s)	
Orig.	4452	288	15.5	
Opt.	0	0	0	

Retiming Results

Deterministic Results

Retiming Results for Hard Constraints: Realisability?

From headway histograms:

• Only Orig. has minimum run time violations.

- So Orig. is not realisable.
- Opt. is realisable.

Retiming Results

Deterministic Results

Retiming Results for Hard Constraints: Headway Conflicts?

Figure 2: #Edges per Planned headway. m + s < 3' and T - 3' < m + s, are problematic. Orig: NOK, Opt OK.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Retiming Results

Deterministic Results

Retiming Results for Hard Constraints: Headway Conflicts?

Figure 3: #Passengers per Planned headway. m + s < 3' and T - 3' < m + s, are problematic. Orig: NOK, Opt OK.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Retiming Results

Deterministic Results

Retiming Results for Hard Constraints: *Macroscopically* Feasible?

From headway histograms:

- Only Orig. has minimum headway time violations.
- So Orig. is not *macroscopically* feasible = not conflict-less.

• Opt. is *macroscopically* feasible = conflict-less.

Retiming Results

Deterministic Results

Retiming Results in the Planned Train Time Domain

Figure 4: Increase of 2.53% of total planned train time from Orig. to Opt.

Retiming Results

Deterministic Results

Retiming Results in the Planned Train Time Domain

Bargraphs show: Orig. \rightarrow Opt.

- Same planned train minimum ride + dwell time:
 - due to same number of trains and same minima in Orig. and Opt. timetables,
- (relatively) more planned train ride + dwell supplement time:
 - steered by objective function trading off efficiency with robustness,
 - effectiveness for passenger service of this is to be judged in expected passenger time domain.

Retiming Results

Stochastic Results

Results in the Expected Passenger Time Domain

Figure 5: Reduction by 2.90% of total exp. passenger time from Orig. to Opt.

Retiming Results

Stochastic Results

Results in the Expected Passenger Time Domain

Bargraphs show: Orig. \rightarrow Opt.

- = same (expected) minimum ride + dwell time due to:
 - same train line plan
 - passengers (still) taking same routes
- \bullet + less expected ride + dwell supplement time \rightarrow more efficient
- \bullet + lowered expected knock-on delay \rightarrow better robustness
- - increased expected transfer time due to:
 - difficulty for solver to plan many transfers with few passengers

 \bullet + overall reduction of 2.90% in expected passenger time

Reduction of missed transfer probability from 11.34% to 2.45%

Conclusions

- practical method to optimise timetables (in 65 minutes)
- objective = minimal expected passenger time
- $\bullet\,$ showed Orig. $\rightarrow\,$ Opt. reduction of 2.90% in exp. passenger. time

- evaluation reports on hard constraints, deterministic
 - stability (ride & dwell & transfers)
 - feasibility = conflict freeness (headways)
- evaluation reports on soft constraints, stochastic
 - efficiency versus robustness
 - does not consider resilience

Railway Timetable Performance Indicators

Table 3: Railway Timetable Performance Indicators

determ	inistic	stochastic				
stable	feasible	robust	resilient			
property in realised domain						
	no					
timetable-	timetable-	timetable	timetable			
internal	internal	absorbs common	allows dispatching			
delays	delays	prim. & sec.	to absorb			
settle		delays	more rare delays			
cause or measure taken in planned domain						
some	no	supplements	timetable-			
supplements	supplements	are <i>sufficiently</i>	tuned			
can be negative	are negative	large	dispatching			
but some are			measures			
compensatingly						
positive						

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

International Comparison

Table 4: Current Quality Levels of some European Railway Timetables

		detern	ninistic	stochastic		
Level	stable		feasible	robust	resilient	Country
		realisable	no μ -HW-conflicts			
0						FR,IT, <mark>BE,DK</mark>
1	v					NL,UK
2	v	v	V			DE
3	v	v	V	v		CH,SE
4	v	v	V	v	v	
	stable	realisable	no 3-HW-conflicts	robust	resilient	Country
?, ?	V,V	V, V	V,V	V,V		<i>BE'</i> *, DK' *

- Black text above [Goverde and Hansen(2013)], based on inquiries and timetable process descriptions of 2013, may be incorrect.
- [Sels et al.(2015a)Sels, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015b)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015c)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- μ -HW = microscopically calculated min. headway times.
- 3-HW = 3 minute macroscopically assumed min. headway times.

Towards a Better Train Timetable for Denmark, Reducing Total Expected Passenger Time Conclusions & Future Work

Future Work

- evaluate over only real transfers ← data?
- vary parameter 'a' value: 1% .. 5%
- add parameter 'r'
 - $\bullet\,$ r% of passengers benefit from temporal spreading of trains

• parameter 'r' value: 0% .. 100%

Towards a Better Train Timetable for Denmark, Reducing Total Expected Passenger Time Questions / Next Steps

Questions / Next Steps

- Your questions?
 - here and now, or ...
 - sels.peter@gmail.com
 - www.LogicallyYours.com/research/

Results in all Time Domains

Figure 6: Reduction by 3.16% of total exp. passenger time from Orig. to Opt.

- Goverde, R., Hansen, I., 2013. Performance indicators for railway timetables. Proceedings of IEEE International Conference on Intelligent Rail Transportation: ICIRT2013, August 30-September 1, 2013, Beijing, China., 301-306.
- Sels, P., Cattrysse, D., Vansteenwegen, P., Jul. 2015a. Practical Macroscopic Evaluation and Comparison of Railway Timetables. Proceedings of the 18th Euro Working Group on transportation (EWGT2015), 14-16 July 2015, Delft, The Netherlands. URL http://4c4u.com/ED2015.pdf.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., 2015b. Reducing the Passenger Travel Time in Practice by the Automated Construction of a Robust Railway Timetable. submitted to Transportation Research Part B URL http://4c4u.com/TRB2015.pdf.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., Jul. 2015c. Towards a Better Train Timetable for Denmark, Reducing Total Expected Passenger Time. Proceedings of the 13th Conference on Advanced Systems in Public Transport (CASPT2015), 19-23 July 2015, Rotterdam, The Netherlands. URL http://4c4u.com/CR2015.pdf.