Peter Sels^{1,2,3}, Dirk Cattrysse², Pieter Vansteenwegen²

¹Katholieke Universiteit Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium

²Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> ³Infrabel, Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

> > July 16th 2015

Table of Contents

1 Comparing and Preferring Timetables

2 Methodology

- Graph Based
- Evaluation Function for 4 Passenger Stream Types
- Evaluation Function for Secondary Delays: Expected Passenger Knock-On Time

- 3 Deterministic Results
- 4 Stochastic Results
- 5 Conclusions & Future Work

6 Questions

Comparing and Preferring Timetables

Belgian Infrastructure Management Company: Infrabel:

Compare 2 Timetables in terms of Expected Passenger Travel Time (includes: ride, dwell, transfer time and primary and secondary delays)

Note:

Including primary and secondary delays \Rightarrow evaluate efficiency & robustness

Specifics:

One Busy Day, Morning Peak Hour

Methodology

Graph Based

Result of Reflowing: Disc Area = Daily Flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Methodology

Evaluation Function for 4 Passenger Stream Types

In-Time and Over-Time

Table 1: In-Time and Over-Time Integrals when adding supplement D_0

	In-Time	Over-Time
probability	$\int_0^{D_0} p_a(x) dx$	$\int_{D_0}^{D_1} p_a(x) dx$
inc./dec. in D_0	inc.	dec.
expected time	$\int_0^{D_0} p_a(x) D_0 dx$	$\int_{D_0}^{D_1} p_a(x) D_1 dx$
inc./dec. in D_0	inc.	dec.
departing = ride' + dwell' + source		\checkmark
through = ride + dwell	\checkmark	
changing = ride + transfer	\checkmark	\checkmark
arriving = ride + sink	\checkmark	

・ロト・日本・モト・モート ヨー うへで

Methodology

Evaluation Function for 4 Passenger Stream Types

Cost curves of 4 Passenger Categories

Methodology

Evaluation Function for Secondary Delays: Expected Passenger Knock-On Time

All Knock-On Costs for N(N - 1) Trains on Same Resource: Formula

$$\forall R : pKO_R = \sum_{\substack{i,j \in I_R \\ i \neq j}} f_j \cdot \frac{a_j e^{-a_i s_{i,j}}}{a_i(a_i + a_j)}.$$
 (1)

Results for Hard Constraints: Realisability?

Table 2: Realisability. Reduction of the number and size of minimum runtime violations from timetable T1 \rightarrow T2.

timetable distribution		# actions with a violation per size of violation in second					onds				
	6s	12s	18s	24s	30s	36s	42s	48s	56s	60s	66s
T1	320	219	126	93	24	27	3	6	1	3	1
T2	277	155	84	37	11	2	2	2			

Table 3: Realisability. Reduction of total and average violation from timetable T1 \rightarrow T2.

timetable	weighted sum (s)	tot.#	avg. (s)
T1	11454	823	13.9
T2	6504	570	11.4

Practical Macroscopic Evaluation and Comparison of Railway Timetables Deterministic Results

Results for Hard Constraints: Minimum Run Time Violations.

From run time check table:

- Both T1 and T2 have minimum run time violations.
- So are not realisable.
- T2 has fewer and smaller run time violations than T1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Results for Hard Constraints: Headway Conflicts?

Figure 1: Planned headway supplements, in T1 and T2 of: $T - 3' \le s < T$, are problematic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Results for Hard Constraints: Headway Conflicts.

From headway histograms:

• Both T1 and T2 have minimum headway time violations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• So are not feasible = not conflict-less.

Results in the Planned Train Time Domain

Figure 2: Increase of 9.71% f total planned train time from T1 to T2. All time units are in 6 second multiples.

Results in the Planned Train Time Domain

Bargraphs show: $T1 \rightarrow T2$

- more planned train minimum ride + dwell time:
 - due to some extra trains in T2 compared to T1,
 - effectiveness for passenger service of this is to be judged in expected passenger time domain.

- (relatively) more planned train ride + dwell supplement time:
 - efficiency versus robustness of this is to be judged in expected passenger time domain.

Results in the Expected Passenger Time Domain

Figure 3: Reduction of 2.47% of total expected passenger time from T1 to T2. All time units are in 6 second multiples.

Results in the Expected Passenger Time Domain

Bargraphs show: T1 \rightarrow T2

- + less (expected) minimum ride + dwell time due to:
 - ${\scriptstyle \bullet}\,$ faster trains and/or
 - more effective direct connections (for big passenger OD pairs) (different line planning)
- ullet more expected ride + dwell supplement time \rightarrow less efficient
- $\bullet = \mathsf{similar} \ \mathsf{expected} \ \mathsf{knock-on} \ \mathsf{delay} \to \mathsf{similar} \ \mathsf{robustness}$
- + significantly reduced expected transfer time due to:
 more effective transfers (for big passenger OD pairs)
- \bullet + overall reduction of 2.47% in expected passenger time
- + average probability of missing a transfer is reduced from 14.41% for T1 to 5.51% for T2.

International Comparison

Table 4: Current Quality Levels of some European Railway Timetables

Level	realisable	conflictless	robust	resilient	Country
	no min.	no min.			
	run/dwell	headway			
	violations	violations			
feasible					
deterministic			stoc	hastic	
0					FR, IT, BE, DK
1	v				NL, UK
2	v	v			DE
3	v	v	v		CH, SE, <i>BE</i> ′*, <i>DK</i> ′*
4	v	v	v	v	

- All text in black above is due to [Goverde and Hansen(2013)]
- [Sels et al.(2015a)Sels, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015b)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015c)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- *Note: Our optimized timetables: BE',DK'are stable, have no 'macroscopic conflicts' and are robust.

Conclusions

- practical method to evaluate and compare timetables
- objective = evaluation function = minimal expected passenger time

- $\bullet\,$ showed T1 \rightarrow T2 reduction of 2.47% in exp. passenger. time
- evaluation reports on hard constraints, deterministic
 - realisability (ride & dwell & transfers)
 - conflict freeness (headways)
 - stability (cycles)
- evaluation reports on soft constraints, stochastic
 - efficiency
 - robustness
 - (resilience)

Practical Macroscopic Evaluation and Comparison of Railway Timetables Conclusions & Future Work

Future Work

- evaluate over only real transfers ← data?
- vary parameter 'a' value: 1% .. 5%
- add parameter 'r'
 - $\bullet\,$ r% of passengers benefit from temporal spreading of trains

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• parameter 'r' value: 0% .. 100%

Questions

- Your questions?
 - here and now, or ...
 - sels.peter@gmail.com
 - www.LogicallyYours.com/research/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Goverde, R., Hansen, I., 2013. Performance indicators for railway timetables. Proceedings of IEEE International Conference on Intelligent Rail Transportation: ICIRT2013, August 30-September 1, 2013, Beijing, China., 301-306.
- Sels, P., Cattrysse, D., Vansteenwegen, P., Jul. 2015a. Practical Macroscopic Evaluation and Comparison of Railway Timetables. Proceedings of the 18th Euro Working Group on transportation (EWGT2015), 14-16 July 2015, Delft, The Netherlands. URL http://4c4u.com/ED2015.pdf.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., 2015b. Reducing the Passenger Travel Time in Practice by the Automated Construction of a Robust Railway Timetable. submitted to Transportation Research Part B URL http://4c4u.com/TRB2015.pdf.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., Jul. 2015c. Towards a Better Train Timetable for Denmark, Reducing Total Expected Passenger Time. Proceedings of the 13th Conference on Advanced Systems in Public Transport (CASPT2015), 19-23 July 2015, Rotterdam, The Netherlands. URL http://4c4u.com/CR2015.pdf.