Practical Macroscopic Evaluation and Comparison of Railway Timetables

Peter Sels ${ }^{1,2,3}$, Dirk Cattrysse ${ }^{2}$, Pieter Vansteenwegen ${ }^{2}$

${ }^{1}$ Katholieke Universiteit Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium
${ }^{2}$ Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author
${ }^{3}$ Infrabel, Traffic Management \& Services, Fonsnylaan 13, 1060 Brussels, Belgium

July 16th 2015

Table of Contents

(1) Comparing and Preferring Timetables
(2) Methodology

- Graph Based
- Evaluation Function for 4 Passenger Stream Types
- Evaluation Function for Secondary Delays: Expected Passenger Knock-On Time
(3) Deterministic Results
(4) Stochastic Results
(5) Conclusions \& Future Work
(6) Questions

Comparing and Preferring Timetables

Belgian Infrastructure Management Company: Infrabel:
Compare 2 Timetables in terms of Expected Passenger Travel Time (includes: ride, dwell, transfer time and primary and secondary delays)

Note:
Including primary and secondary delays
\Rightarrow evaluate efficiency \& robustness

Specifics:

One Busy Day, Morning Peak Hour

Methodology

Graph Based

Result of Reflowing: Disc Area = Daily Flow

Evaluation Function for 4 Passenger Stream Types

In-Time and Over-Time

Table 1: In-Time and Over-Time Integrals when adding supplement D_{0}

	In-Time	Over-Time
probability inc. $/$ dec. in D_{0}	$\int_{0}^{D_{0}} p_{a}(x) d x$	$\int_{D_{0}}^{D_{1}} p_{a}(x) d x$
inc.	dec.	
expected time	$\int_{0}^{D_{0}} p_{a}(x) D_{0} d x$	$\int_{D_{0}}^{D_{1}} p_{a}(x) D_{1} d x$
inc. $/$ dec. in D_{0}	inc.	dec.
departing $=$ ride' + dwell' + source		\checkmark
through $=$ ride + dwell	\checkmark	
changing $=$ ride + transfer	\checkmark	\checkmark
arriving $=$ ride + sink	\checkmark	

Cost curves of 4 Passenger Categories

(a) departing=ride'+dwell' +source

(c) changing $=$ ride + transfer

(b) through=ride+dwell

(d) arriving $=$ ride + sink

Practical Macroscopic Evaluation and Comparison of Railway Timetables

Methodology

Evaluation Function for Secondary Delays: Expected Passenger Knock-On Time

All Knock-On Costs for $N(N-1)$ Trains on Same Resource: Formula

$$
\begin{equation*}
\forall R: p K O_{R}=\sum_{\substack{i, j \in I_{R} \\ i \neq j}} f_{j} \cdot \frac{a_{j} e^{-a_{i} s_{i, j}}}{a_{i}\left(a_{i}+a_{j}\right)} \tag{1}
\end{equation*}
$$

Results for Hard Constraints: Realisability?

Table 2: Realisability. Reduction of the number and size of minimum runtime violations from timetable $\mathrm{T} 1 \rightarrow \mathrm{~T} 2$.

timetable	distribution: \# actions with a violation per size of violation in seconds										
	6s	12s	18s	24s	30s	36s	42s	48s	56s	60s	66s
T1	320	219	126	93	24	27	3	6	1	3	1
T2	277	155	84	37	11	2	2	2			

Table 3: Realisability. Reduction of total and average violation from timetable $\mathrm{T} 1 \rightarrow \mathrm{~T} 2$.

timetable	weighted sum (s)	tot.\#	avg. (s)
T1	11454	823	13.9
T2	6504	570	11.4

Results for Hard Constraints: Minimum Run Time Violations.

From run time check table:

- Both T1 and T2 have minimum run time violations.
- So are not realisable.
- T2 has fewer and smaller run time violations than T1.

Results for Hard Constraints: Headway Conflicts?

Figure 1: Planned headway supplements, in T 1 and T 2 of: $T-3^{\prime} \leq s<T$, are problematic.

Results for Hard Constraints: Headway Conflicts.

From headway histograms:

- Both T1 and T2 have minimum headway time violations.
- So are not feasible $=$ not conflict-less.

Results in the Planned Train Time Domain

Figure 2: Increase of $9.71 \% \mathrm{f}$ total planned train time from T1 to T2. All time units are in 6 second multiples.

Results in the Planned Train Time Domain

Bargraphs show: T1 \rightarrow T2

- more planned train minimum ride + dwell time:
- due to some extra trains in T2 compared to T1,
- effectiveness for passenger service of this is to be judged in expected passenger time domain.
- (relatively) more planned train ride + dwell supplement time:
- efficiency versus robustness of this is to be judged in expected passenger time domain.

Results in the Expected Passenger Time Domain

Figure 3: Reduction of 2.47% of total expected passenger time from T1 to T2. All time units are in 6 second multiples.

Results in the Expected Passenger Time Domain

Bargraphs show: T1 \rightarrow T2

- + less (expected) minimum ride + dwell time due to:
- faster trains and/or
- more effective direct connections (for big passenger OD pairs) (different line planning)
- - more expected ride + dwell supplement time \rightarrow less efficient
- = similar expected knock-on delay \rightarrow similar robustness
- + significantly reduced expected transfer time due to:
- more effective transfers (for big passenger OD pairs)
- + overall reduction of 2.47% in expected passenger time
- + average probability of missing a transfer is reduced from 14.41% for T1 to 5.51% for T2.

International Comparison

Table 4: Current Quality Levels of some European Railway Timetables

Level	realisable	conflictless	robust	resilient	Country
	no min. run/dwell violations	no min. headway violations			
feasible					
	deterministic		stochastic		
0					FR, IT, BE, DK
1	v				NL, UK
2	v	v			DE
3	v	v	v		$\mathrm{CH}, \mathrm{SE}, B E^{\prime *}, D K^{*}$
4	v	v	v	v	

- All text in black above is due to [Goverde and Hansen(2013)]
- [Sels et al.(2015a)Sels, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015b)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- [Sels et al.(2015c)Sels, Dewilde, Cattrysse, and Vansteenwegen]
- *Note: Our optimized timetables: BE',DK'are stable, have no 'macroscopic conflicts' and are robust.

Conclusions

- practical method to evaluate and compare timetables
- objective $=$ evaluation function $=$ minimal expected passenger time
- showed T1 \rightarrow T2 reduction of 2.47% in exp. passenger. time
- evaluation reports on hard constraints, deterministic
- realisability (ride \& dwell \& transfers)
- conflict freeness (headways)
- stability (cycles)
- evaluation reports on soft constraints, stochastic
- efficiency
- robustness
- (resilience)

Future Work

- evaluate over only real transfers \leftarrow data?
- vary parameter 'a' value: 1%.. 5%
- add parameter 'r'
- $r \%$ of passengers benefit from temporal spreading of trains
- parameter 'r' value: 0%.. 100%

Questions

- Your questions?
- here and now, or ...
- sels.peter@gmail.com
- www.LogicallyYours.com/research/

Goverde, R., Hansen, I., 2013. Performance indicators for railway timetables. Proceedings of IEEE International Conference on Intelligent Rail Transportation: ICIRT2013, August 30-September 1, 2013, Beijing, China., 301-306.

Rels, P., Cattrysse, D., Vansteenwegen, P., Jul. 2015a. Practical Macroscopic Evaluation and Comparison of Railway Timetables. Proceedings of the 18th Euro Working Group on transportation (EWGT2015), 14-16 July 2015, Delft, The Netherlands. URL http://4c4u.com/ED2015.pdf.

囯 Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., 2015b. Reducing the Passenger Travel Time in Practice by the Automated Construction of a Robust Railway Timetable. submitted to Transportation Research Part B URL http://4c4u.com/TRB2015.pdf.

蔦
Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., Jul. 2015c. Towards a Better Train Timetable for Denmark, Reducing Total Expected Passenger Time. Proceedings of the 13th Conference on Advanced Systems in Public Transport (CASPT2015), 19-23 July 2015, Rotterdam, The Netherlands. URL http://4c4u.com/CR2015.pdf.

