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Abstract
In optimizing the national railway timetable for the Belgian infrastructure company Infrabel,
we use the quality criterium of minimizing expected total passenger travel time. Optimiz-
ing the timing of all trains fairly over all passengers requires passenger flow information.
Focus is usually on determining the train service offer side, being the train timing, without
considering the demand side data, being the passenger flow information. In this paper, we
focus on passenger flow derivation.

We start from train ticket sales data and use Dijkstra’s modified shortest path algorithm
on the Belgian passenger train graph to determine a route per passenger origin destination
station pair. We sum route passenger flows over all these routes. We also show how, in op-
timization of a timetable, timing and flows should be treated as interdependent. This means
that we can use a process of iteration over these two phases, which we then call reflowing
and retiming.

The infrastructure company did not have this passenger flow information available for the
current schedule, but they need it to optimize many decisions. We determined these passen-
ger flows for the current timetable.

We also give some recommendations regarding the improvement of passenger flow related
data recording procedures, which would significantly improve passenger service.
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1 Introduction

In the context of setting up a good national railway timetable for the fixedly treated lines of
Belgian passenger trains, the question arises as to what quality criterium or criteria should
be used. For a client driven organization, asking the passengers is the logical answer. In
questionnaires, this - not surprisingly - consistently points to lower total travel times as
number one on their wish list. Travel times can be seen as average times or worst case times,
but the variation in times is also required to be low. Low variation is a property of a robust
schedule. To objectively evaluate any of these criteria, total passenger time is to be summed
over all passengers, each one having the same weight. For this to be possible, we need to
know passenger numbers on any unit piece of their trips. Rather surprisingly, it turns out,
that this data is not available. A chip card system would give this information but is not yet
implemented in Belgium. Yearly, partial counts are performed, but this generates too little
information to be usable. This means that up to now, no such objective quality criterium
was used in optimizing a railway schedule in Belgium. We need these passenger numbers,
so we set up a procedure to derive them from ticket sales and some other data. Later, we
give some recommendations for data collection that could greatly improve results, and are
easy to perform.

In Section 2, we introduce the train network graph, how the reflowing and retime phase
work on this graph, and how iteration over them works and decreases the total expected
passenger time. Section 3 explains the hourly asymmetry inherent to real passenger flows,
the lack thereof in the available data and how data collection can be improved. Section 4
describes how zone to zone based ticket sales numbers can be converted to approximate
station to station based data and again how data collection can even improve its results.
Section 5 describes how, from these station to station passenger numbers, passenger routes
and the resulting flows can be derived. It also shows how this procedure can be used on
an existing as well as a still to be optimized train timetable. We give a practical algorithm,
verify its output data where we can, and show what is new and useful about this data. Section
6 sketches how the problem scope should be extended when the effect of a change in Origin-
Destination-matrix has to be included. Section 7 summarizes the main contributions of this
paper while Section 8 mentions our plans for related further work.

2 The FAPESP Problem

In formalizing the problem and the graph to model it, we are inspired by the formulation
of the timetable problem as a Periodic Event Schedule Problem (PESP) [7, 8, 10, 11, 12,
15, 16]. This is the problem of determining good or optimal values for periodic event times
or equivalently the durations between these event times. Since PESP does not consider
(passenger) flow variables, we need to extend it. We propose to call the extended prob-
lem FAPESP, for Flow Allocation and Periodic Event Scheduling Problem. Comparable
research has been performed by Bouma et. al. [1], Hofker et al. [9] and Exel et. al. [6]
and led to the tools PROLOP and TRANS, developed by QQQ Delft, for passenger flow
derivation on the Dutch train network. The graph we set up is similar to the PESP graph,
but apart from a duration variable for each edge, it also has a flow variable for each edge.
We describe and construct all objects in detail here, which will lead us to the final FAPESP
graph.



2.1 The FAPESP Graph

Train and Passenger Actions
To be able to let passengers choose their preferred routes present in the train network, we
need to model this network. This network models the train service. All trains intermittently
ride and dwell between and at stations. Also, we have passengers realizing transfers be-
tween trains. This results in three types of actions. The train actions ride and dwell and the
passenger transfer action. Every action has one passenger flow. So these are the values to
be derived.

For the further optimization, it is noted that either the flow numbers on these separate
actions will be used, or otherwise, flows per route will be used, where we need to be able to
follow passenger flows per route, through their whole sequence of ride, dwell and transfer
edges. This could be useful for example, if we need to evaluate the probability that a person
following a certain route will arrive on time [13]. So we keep data-structures for both
separate action flows and origin to destination routes with their associated flows.

Vertices and Edges
The set of actions can be practically represented by a directed graph G(V,E) with vertex
set V and edge set E. Refer to Figure 1 for construction of this graph.

Vertices come in two kinds for trains and two kinds for passengers.

• a train arriving at a station, set Varr ⊂ V

• a train departing from a station, set Vdep ⊂ V

• a set of in passengers going to depart from and now entering a station, set Vi ⊂ V

• a set of out passengers having arrived at and now leaving a station, set Vo ⊂ V

where, Varr ∪ Vdep ∪ Vi ∪ Vo = V and all pairwise sets are distinct.
Edges model the activities for which we want to determine flows and durations. They

are all directed ones and come in two kinds for trains and three kinds for passengers:

• a train riding between its departing time at the previous station and its arrival time at
the next station, set Er

• a train dwelling between its arriving time at the current station and its departing time
from the current station, set Ed

• a train turning around at its end station to go the other direction, set Eta. The set
Eta may be considered a subset of the set Ed but in fact other constraints apply.
For example passengers will not be able to enter a train when it is performing a turn
around action. Also, a minimal service time for a turn around action will usually be
larger than a minimal dwell time for a standard dwell action.

• a set of incoming passengers entering our system graph at a certain departing out-
bound train, set Ei

• a set of passengers transferring between a feeder train arriving in a station and a
different, outbound train departing from that same station, set Etr. Note that the
transferring passenger can start his transfer at the beginning of the dwell action of
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the feeder train and should end transferring before the end of the dwell action of the
departing train. Because an edge represents the maximum allowed time for its action,
we model the transfer edge between these points.

• a set of outgoing passengers leaving our system graph at a certain departing outbound
train, set Eo

where again, Er ∪Ed ∪Eta ∪Ei ∪Etr ∪Eo = E and all pairwise subsets sets are distinct.
Note that the in and out edge types are necessary if we want to distinguish passengers flows
entering (or leaving) different trains at the same station.

2.2 The Two-Phased Approach

Reflow Phase
The task of the reflow phase will be to assign a passenger flow fe to every edge e ∈ E.
Note that the reflow phase does not do any assignment to any vertex variables. The input
data here is the graph structure, including the edge duration de of each edge e, together
with the number of passengers per origin station to destination station pair, called OD-
pair. A shortest route will be chosen for each OD-pair. This is done here with Dijkstra’s
shortest path algorithm. Per edge e, flows from all routes that pass through e, can then be
accumulated to obtain the total flow fe of e.

Retime Phase
Similarly, the task of the retime phase will be to assign a duration de for every edge e ∈ E,
but this time, also satisfying all infrastructure constraints. Currently, we consider the dura-
tion for all in and out edges from Ei and Eo equal to 0. The input data here, is again the
graph structure, this time annotated with the flows fe obtained in the previous phase: the re-
flow phase. These fe are treated as fixed now. The variables are de for which we determine
an ideal value here. There is of course a minimum to each de per action, which we represent
by me. The technique we use to do this is Mixed Integer Linear Programming (MILP).

On the vertex level, the retime phase results in event times tv per vertex v ∈ V that are
separated by the durations of the edges between them. But in fact this is only a derived
property. Also, if we add a constant time to each vertex time tv , the result is still a valid
solution of exactly the same quality. With quality, we mean goal function value, which is
discussed next.

Same Goal Function for Both Phases
The goal of both phases: reflowing and retiming, will be to choose fe and de values respec-
tively so that a single goal function is minimized. In this function the assignments fe and
de are the complete set of variables.

We can write this as
G : E|E| → R : e 7→ g(fe, de), (1)

where the goal function G does a mapping from all edges e, using its fe and de values of
the latest reflow and retime phases respectively to a real goal function value.

So, for the reflow phase, we derive the set fe, supposing that the de set is constant
while for the retime phase, oppositely, we derive the set de while supposing the set fe to be
constant.



Each phase only has an effect on one of the variable sets. But what is important towards
global optimization, is that they share the same goal. This is taken care of by using the
same goal function for both. We can then even iterate over these two consecutive phases.
Note that an identical goal function, in general, does not guarantee yet that iteration of both
phases will converge to a fixed point solution. Oscillation between different good or not so
good yet solutions could still be possible in steady state.

The retime phase corresponds to the aforementioned PESP problem. Because, for retim-
ing, our goal function has fixed fe values, it depends only on de. Integer linear programming
techniques are often used to solve PESP. This can be done if (1) is linear in de. As a more
specific example of a linear goal function (in this case to be minimized) we propose to use
the total expected passenger time

g(fe, de) =
∑
e∈E

fede. (2)

Other functions that use the assignments fe and de can be used though, without breaking
the workings of the iterative system.

Using a stochastic formulation of the total expected passenger time, we can even include
a balance between a speedy service and robustness and still remain linear. Constraints are
linear too. This will be the topic of a future paper on retiming. Concerning this approach to
robustness, we refer to the papers of Vansteenwegen et al. [17, 18] and Dewilde et al. [4].

2.3 Self Sufficient Iterations

We already mentioned that the reflow and retime phases can be executed iteratively in a se-
quential loop. Figure 2 shows this idea graphically. The rectangular boxes represent opera-
tions, while the rounded boxes show data in- and outputs or decision points. zodzo,zd stands
for the zone origin destination matrix which specifies for every origin zone to destination
zone how many passengers we have. The Mapper in Section 4 will do a mapping from this
to a station to station OD-matrix, called sodso,sd . FA stands for Flow Allocation, or the
reflow phase, which results in initial values for fe in the first iteration or more appropriate
values for fe adapted to the changed de values, in all subsequent iterations. In all iterations,
the retime phase PESP, will produce better values for the edge durations de, adapted to these
changed fe flow values. Cordone and Radaelli [2] as well as Schmidt and Schöbel [14] also
came to an approach of iterations of similar two steps. We call this FAPESP iteration a
self sufficient one, because the reflow phase, by being able to model peoples behavior in
selecting the shortest route, does not depend on external data.

What remains to be done now is to describe in detail what we mean by the data and
operations in the rounded and rectangular boxes. This is the focus of the remainder of this
paper. We start with the meaning of zodzo,zd in theory versus practice.

3 Morning versus Evening Traffic Separation, Hourly Asymmetry and
Hourly Sum

3.1 Hourly Asymmetry

In fact the data for zozo,zd we had available is entirely and exactly symmetric in their OD-
pairs.
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Figure 2: FAPESP Two Phase Flow Chart
offer and demand iteratively adapting to each other

This means that the number of passengers between zones A and B is always equal to
the number of passengers between B and A. This was at first surprising, but is explained
by the fact that it are sale figures of seasonal tickets, always valid in two directions between
two zones.

However, this is unfortunate, since here information gets lost about the direction of
travel. For instance, no procedure could possibly be able to separate out the passenger flows
in the morning from the ones in the evening.

One could argue that this information is not needed, since timetables should be sym-
metric anyway. One of the reasons given is that people who travel one way in the morning
usually come back in the evening. This is true, but not the correct reason. Symmetry is a
property of a timetable, even within one period, usually one hour [11].

To know
∀e ∈ E : de = ds(e), (3)

where s(e) is the symmetric edge of e. The symmetric edge for a train riding from
station A to subsequent B is the edge for the opposite train going from station B to A. This
implies that every train has another train in the opposite direction. But e can be any train or
passenger edge type, ride dwell, transfer, in, out. What is important here is that both edges
e and s(e) make part of the same hourly instance of a the full days schedule.

However, within one hour, commuting flows are certainly not symmetric. Typically
morning flows bring people from smaller places to bigger cities and oppositely the evening
flow brings people from big cities to these smaller places again. So separately treated,
morning passenger flows within each morning hour is not symmetric nor is the evening
passenger flow. This means that, morning and evening separately treated again, we would
need fewer trains per hour in one direction than in the other.

The main reason that still, per hour symmetric schedules are common, are rolling stock
constraints.[8, 11] Indeed, if the frequency of trains from A to B is higher than backwards
from B to A, material availability will increase in B and decrease in A. In fact this would
be good to support the backwards flow in the evening, but this requires storage capacity and
also leaves material sitting idle, which all have a cost too. These costs should in fact be
weighted against the extra cost of requiring a symmetric schedule. For a clear description
of benefits and costs of symmetry, we refer to Liebchen [11].

For now, missing data, working for short term and also considering that material han-
dling cannot be immediately totally redesigned from scratch, we will keep using the sym-



metric simplification of the OD-matrix. But we will remember that using symmetric flow
data misses a chance on a passenger service improvement of which the importance is yet
unknown.

3.2 Separation Recommendation

As conclusion of the previous paragraph we can recommend an improvement to the data
collection procedures for the train operator company.

At the source, let the train passengers specify their morning source and morning des-
tination at ticket purchase time and keep accurate record of this. This would show the
asymmetric nature of passenger flow data, which is important to keep, to be able to later,
correctly balance passenger service benefits with material handling costs.

4 The Mapper: Mapping Zone Pair to Station Pair Numbers

We mentioned in 2.3 and showed in Figure 2, that we start from seasonal subscription ticket
sales data to derive local flows on edges. Note that, this information represents the current
customer OD-matrix and not the desired one, independent of the current train service offer.
This corresponds in choice modelling with preferred versus stated preference. Also, we will
see that this information is not yet in a directly usable format to start calculating routes for
them in our graph, and how we can convert it first. This is the task of the mapper.

4.1 Zones instead of Stations

Tickets, in Belgium, are issued and sold, from one origin zone to a destination zone. A zone
is a collection of geographically clustered stations. This means that from the ticket sales
data, only the origin zone and destination zone are known, and not the specific respective
stations. This is unfortunate. We will have no other choice than to somehow proportionally
map zone to zone pairs to station to station pairs.

4.2 Zone to Station Matrix Conversion

From an Infrabel study, we had available the absolute numbers poMs of departing passengers
per origin station per Morning, based on actual physical countings. In these countings, pas-
sengers at the origin station were not asked what destination they were going to. So these
countings only give a single number per origin which is the total for all the destinations
corresponding with this origin.

To obtain the (departing) importance of a station in a zone, we derived all ratios of each
stations’ poMs over the sum of all poMs over the stations in their zone. Formally, if zodM
is the origin destination matrix expressed in zones for the Morning, and Sz the set of stations
in the zone z, then the ratios roMs standing for ratios of origin in the Morning are defined
and calculated as

∀(zo, zd) ∈ dom(zodM) : ∀s ∈ Szo : roMs ≡
poMs∑

s′∈Szo
poMs′

, (4)

where dom(zod) represents the domain of the zone origin destination matrix zod, which



represents all the origin-destination zone pairs. (The range, ran(zod) would be their respec-
tive passenger numbers.)

Similarly, for the arriving importance of a station in its zone, on the destination side we
have

∀(zo, zd) ∈ dom(zodM) : ∀s ∈ Szd : rdMs ≡
pdMs∑

s′∈Szd
pdMs′

, (5)

where pdMs are the numbers of passengers arriving per destination station in the Morning,
and rdMs their correspondingly derived ratios. In fact the pdMs were not counted and are
not available, but are necessary for the explanation that follows. We will show later how we
solve this problem.

With poMs and pdMs values, we could derive the station to station Morning OD-matrix
sodM from the zone to zone Morning OD-matrix zodM as

∀(zo, zd) ∈ zodM : ∀(so, sd) ∈ (Szo × Szd) : sodMso,sd ≈ roMso × zodzo,zd × rdMsd .
(6)

As an example, suppose we have 100 passengers, going from one origin zone to a desti-
nation zone. We suppose now that the departing respectively arriving passengers are counted
on origin and destination zone stations and give the poMso and pdMsd numbers given in
Table 1. This table also shows the sodso,sd numbers derived by (6).

Table 1: Derived Origin Stations to Destinations Station Matrix Example
pdMsd 10 20 40 30
rdMsd 0.1 0.2 0.4 0.3

poMso roMso sodMso,sd
40 0.4 4 8 16 12
10 0.1 1 2 4 3
50 0.5 5 10 20 15

In fact, the situation is more complex. In practice, the roMso ratios can be different
across origin stations, resulting in different ratios per destination station for each origin
station. This exactly represents the unrecoverable data loss resulting from being supplied
a zone to zone matrix instead of a station to station matrix. Hence also the approximation
sign in (6).

4.3 Lack of Destination Countings

As we mentioned in 4.2, only departing passengers were counted, and not the arriving ones,
the pdMsd values. So we had to approximate rdMsd by roMsd which further approximates
(6) to

∀(zo, zd) ∈ zodM : ∀(so, sd) ∈ (Szo × Szd) : sodMso,sd ≈ roMso × zodzo,zd × roMsd .
(7)

In conclusion, using (7), our double approximative Mapper procedure derives a station
to station OD-matrix from the zone to zone one. Certainly passenger flows between stations
that are important within their respective zones will still be assigned an important part of
the traffic between these respective zones.



4.4 Results

In Belgium, we define 497 zones, but only 21 contain more than one station. The number
of stations per zone varies from 1 to 7, with the exception of Brussels zone, which contains
31 stations. The zone OD-matrix zod has 19087 zone to zone OD-pairs. Our Mapper,
programmed in C++, expands these to 61725 station OD-pairs. We say that the matrix is
more diffused now. This process takes only 0.97 seconds on a 2.88 GHz dual core Apple
machine. Other processes in FAPESP will be much slower than this, so it is not necessary
to further speed this up.

4.5 Station Resolution versus Station Countings Recommendations

We have shown that due to the absence of accurate station to station flow data, even a
procedure trying to reconstruct it with other data available, can only be an approximation of
the original. So, as conclusion of Section 4 we can recommend a more ideal, yet low cost
improvement to the data collection procedures for the train operator company.

At ticket purchase time, let the train passengers specify his or her morning source station
and morning destination station instead of just recording zones, and keep accurate record of
this. This would represent more correctly, the resolution of passenger flow data, which is
important to avoid any station within zone uncertainty for the optimization stage. This then,
would make the Mapper totally redundant, which is a good thing.

If the OD-matrix is only available on the zone level, we need to rely on countings to
obtain the OD-matrix on the station level to do the mapper transformation. The countings
should be performed well, which means that:

• Departing passengers should be counted at origin station and arriving passengers at
destination station. As demonstrated these countings poMso and pdMsd are both
necessary.

• Better still, would be to also ask the departing passenger what is his destination sta-
tion, as such obtaining sodMso,sd directly. This requires talking to instead of just
counting passengers which is more involved. Note that to be entirely accurate even
transfer passengers should be excluded in these countings, which makes countings
even more complex.

• This is another reason why directly defining tickets and subscriptions in terms of sta-
tions instead of zones is largely preferable to these compensating counting methods.

5 The Router: Routing Station OD-Pairs to Determine Flows

The Router, or FA module, has two main tasks. It needs to derive a graph from existing
trains and add transfers. Then it needs to perform the actual routing over it, for all station
OD-pairs, meanwhile accumulating their flows over the route edges.

To realize this, we have to find the routes that each passenger going from origin station
so to destination station sd will choose. Passengers will usually choose the shortest or
almost shortest route in time. Some bad experience along a slightly shorter route with
varying time, for example due to a transfer often missed, may drive the passenger towards
a slightly longer but more duration stable route. For simplicity, we currently supposed that



we can select the shortest route. Before doing the actual routing, we start with constructing
the graph that routes will be chosen from.

5.1 Graph Derivation

The graph is the FAPESP graph whose elements are defined in Section 2.1. There are two
actors in our graph, trains and passengers. We start with trains.

Dwell And Ride Edges From Existing Train Lines
To produce results relevant to todays operations we started from the existing passenger train
set. We focus on the morning peak. We want to end up with a train set that can be copied
from hour to hour and as such must be representative for every morning peak hour. We
first had to make a decision on what trains to select for inclusion in the graph. We chose the
trains that run during the hours 6 to 10 as the ones to start from. Then, per couple of opposite
trains occurring every hour, we took one representative direction and hour. We noticed that
symmetry is not perfectly maintained within each train couple, but we consistently chose
the first train in the couple as representative. There are also deviations from periodicity,
which meant that for a series of hourly repetitions, we had to choose a certain representative
hour. We took the criterium of selecting the hour of the train that used the most capacity.
This means it is riding for the longest time. The rationale here is that, if we are able to
plan this train, we will also be able to plan a train that uses less capacity. Among the quasi-
symmetrically reversed trains, the same capacity-based selection process is used.

This way, we obtained 205 trains over different categories as they exist in Belgium.
These trains stop and pass through 1114 points of which 550 are stations and 564 are other
reference points. The combinations of these trains with these points gives 11771 vertices
and service edges in our graph. Graph edge numbers are given in Table 2. The train cate-
gories are given in order of having few to many stops per distance travelled. Note that the P
trains, which are peak trains, do not have an opposite train during the same hour, indicating
the apparent benefit of asymmetry during peak hours.

Table 2: Belgian Passenger Train Graph Main Figures
Train Type Lines Service Edges Potential Transfer Edges to TotalRide Dwell IC IR L CR P

IC 50 2294 2244 2897 2205 1338 989 38 7467
IR 41 1390 1349 2159 1431 1181 682 36 5489
L 92 1723 1631 1319 1184 1542 238 47 4330

CR 20 528 508 989 701 237 850 54 2831
P 2 53 51 35 34 45 50 0 164

Total 205 5988 5783 7399 5555 4343 2809 175 20281

Many Potential Transfer Edges
Apart from ride and dwell edges, Table 2 also shows a lot of potential transfer edges, 20281
in total. We explain here what they mean and why there are so many.

The railway companies have defined where they want to guarantee a transfer. They
also have minimal times for these, which they consider in planning. There are however, a
lot of other, non-planned, potential transfers, whose duration corresponds to the difference
between planned arrival and departure times of a pair of trains in the same station. If this



time difference is practical, say around 2 to 20 minutes, they will be exploited by some
passengers. We should not ignore these other transfers.

When we are in the process of scheduling, we do not know the relative order of trains
yet. We only know minimal durations of ride and dwell actions me per edge e. Suppose
a train A arrives at time tarr,A,S in station S and a train B departs at time tdep,B,S in the
same station. We model a vertex varr,A,S for the arrival of train A in S and vdep,B,S for
the departure of B in S. We want to model a transfer edge etr from varr,A,S to vdep,B,S .
Suppose as well that a walking time between the platforms of train A and B takes time metr

The condition that the transfer can be realized on time, is that

tarr,A,S +metr ≤ tB,dep,S . (8)

The minimum time metr is a known constant but tarr,A,S and tdep,B,S are still unknown.
So how can we avoid mapping passengers on a transfer that may go back in time? The
answer is that the transfer is always possible, since due to periodicity, from A, there is
always a next-hour-B to transfer to, however, sometimes with a high transfer time.

This means that we can and should define potential transfers between all train pairs
stopping at a common station, even in both transfer directions. Refer to Figure 1 for the 8
transfers edges generated by the crossing of two train pairs in a station. We have modeled
169 morning trains of which quite some pairs can run along and stop at the same stations,
and the number of transfer edges is quadratic in the number of trains per common stopping
station. So it is not surprising that 10879 potential transfers can result. Table 2 shows these
10879 potential transfers, divided up between each pair of train categories. Their importance
shows the potential interactivity between different categories.

Some reduction in this high potential transfer number could be made here. In order of
increasing crudeness, we could disallow transfers

• from a train to other trains that simply go back to where a passenger just came from,

• between trains with the same direction on a common line in every common station.
(Selecting a first or last transfer over their common trajects is sensible.)

• in very small stations which are supposedly only end stations or departing stations for
people.

For now we try to reduce development time, and still leave all transfer edges in the
graph. We prefer to spend our efforts on tuning the retiming MILP model, such that the
solver can cope with the full graph in a reasonable time and full optimality can be reached.

5.2 Flow Derivation on a Timed versus Untimed Schedule

To derive how flows are distributed over a graph, we need to distinguish three cases. First,
we can use this procedure for an already planned schedule, that has already a duration
for each of its edges. We call this a timed schedule. Second, in the case of optimization
from scratch, no edge durations are known for the initial schedule. We call this an untimed
schedule. Third, in all next iterations retiming has at least been performed once, so these
are called retimed schedules. We examine the differences in treatment here.



Flow Derivation on a (Re)Timed Schedule
In both a timed and a retimed schedule, we make use of the planned edge durations de. This
is in general the minimal time required for the action e, called me, plus a certain supplement,
called se, which is defined in the planning or retime phase respectively. Indeed the task of
the planning as well as retime phase, can be said to be defining, for every e a supplement
se ≥ 0, on top of the minimal action times me. The result is

∀e ∈ (E \ Etr) : de = me + se ≥ me. (9)

So in both contexts, we can use already chosen de values. We excluded the transfer
edges from 9 because they require special treatment. Their durations can be derived from
the other edges as

∀e ∈ Etr : de = (te+ − te− + T ) mod T, (10)

where e+ is the end vertex of the edge e and e− its beginning vertex and T is the period
of our graph. Since we suppose periodicity T , say one hour, of all trains in our graph, also
the transfer between every train pair can occur every hour. Consequently, these two trains
can also never be more than one hour apart, so ∀e ∈ Ttr : de < T . Note that we could add
a penalty to (10), being the time for the inconvenience of having to take a transfer instead
of spending an equal total time on a slower train without a transfer. A subjective time value
is possible here. This has been described by Vansteenwegen and Dewilde et al. [4, 17, 18].

Flow Derivation on an Untimed Schedule
We mentioned before that we can also use this procedure on a schedule, which is still being
optimized. This means that in the FAPESP context, it has not passed any retime phase yet.
We should take care that, in this case, no prejudice is present in our graphs edge durations.
We believe, this means we can choose the values de = me, since this is equivalent with
supplements se = 0, so

∀e ∈ (E \ Etr) : de = me. (11)

This, at least a priori, gives no preference for any edge to get extra slack over other
edges.

We again excluded transfer edges from (11). We could, here as well, use (10) to derive
transfer edges durations. However, since current edge durations from (11) are not really to
be trusted yet, we do not want to derive them from this still uncertain information.

We want to select initial times for the transfers that are not given preference to any of
them, so they all need to get the same initial value, say Ctr.

∀e ∈ Etr : de = Ctr < T. (12)

On the other hand, since we need to model peoples choices in choosing train routes, we
want to avoid choosing too many transfers. Hence we choose a value for Ctr that is equal
to the alternative cost in time of being on riding or dwell edges. We took

Ctr = 15min (13)

as an estimate for this penalty. So 15 minutes is considered a balance between a transfer
short enough to be considered interesting and taken by passengers and long enough to not



result in people changing forth and back at every station between parallel trains in wanting
to skip dwell times longer than this transfer time.

It may seem strange that (12) breaks the usual edge constraints in (10) which seem
to have universal validity in any graph where vertices represent absolute times and edges
durations between them. In fact, it should, but consider that this is only a postcondition
of the retime phase and not a precondition of the reflow phase. Dijkstra and other routing
algorithms are certainly able to cope with a schedule satisfying (12) instead of (10), since
they only use edge duration variables and no vertex variables.

In conclusion, in the FAPESP iterative context, (11) and (12) are the ones to use for
bootstrapping the procedure in the initial iteration. All next iterations will be able to use (9)
and (10).

5.3 Router Algorithms

The main part of our reflow phase is the router algorithm. There are many algorithms
described in literature. We start with a classic shortest path algorithm.

Dijkstra Shortest Path Algorithm
The single pair Dijkstra shortest path algorithm [3, 5] finds a sequence of edges, called
a route, in a directed graph between two specified vertices vo and vd, that has minimal
length. The route length is defined as the sum of the length of all edges belonging to this
route. In our case, we use as edge length for edge e, the time de, so this results in a route
with minimum duration. The Dijkstra algorithm only works for non-negative edge lengths.
Since our durations are non-negative, this is fine. It uses a greedy breadth first search and a
process of relaxation that allows it to make shortcuts. The total running time of this standard
algorithm is O(|V |2 + |E|) which is O(|V |2) [3]. Our average Dijkstra execution time was
1.28 seconds per pair, on a 2.88 GHz dual core Apple machine, which still seems quite high.

Modified Dijkstra Shortest Path Algorithm
Since for our graph |V | = 11771 and |E| = 11771 + 20281 = 32052, it is sparse. For
sparse graphs, it is recommended [3] to implement a priority queue, with a binary heap,
which then results in the modified Dijkstra algorithm. The total running time then becomes
O(|V | + |E|lg|V |) which is O(|E|lg|V |) [3]. This predicts an asymptotic time saving
factor for going to the modified version, of O(|V |2/|E|lg|V |) = 40107. Running the
serial Dijkstra shortest path algorithm sequentially over the 61725 station to station pairs,
on the same machine, now takes 23 minutes 45 seconds, so 1425s. This is an average of
1425s/61725 = 23ms per OD-pair. So the binary heap implementation of the priority
queue gained us a factor 1.28s/23ms = 55.6 which is quite a bit lower than the predicted
magnitude for the asymptotic case but still satisfying.

Further Possible Improvements
Implementing the priority queue as a Fibonacci heap instead of a binary heap could still
lower execution time to O(|V |lg|V |+ |E|) [3].

On multicore systems a parallel version which can execute multiple route findings in
separate threads simultaneously could also be implemented.

More essentially, instead of considering all the O(|V |2) OD-pairs separately, we could
cache results of sub-routes already calculated in executions of previous OD-pairs and reuse



them. This idea occurs also in the approach in the all pairs Dijkstra Algorithm [3]. John-
son’s algorithm has the best asymptotic performance from the ones mentioned by Cormen et
al. [3]. Instead of executing singe pair algorithm |V |2 times sequentially which would give
a performance of O(|V |3+|V |2|E|lg|V |), Johnsons algorithm gives O(|V |2lg|V |+|V ||E|)
when using the Fibonacci heap. This looks promising, but since we expect retiming to take
much more execution time than the current 23 minutes for reflowing, we, for now, prefer to
spend our efforts there rather than here.

We have now described the reflow phase. We now want to execute the reflow phase on
the current schedule to know current flows. Then we want to see if we can do better by
running the reflow phase on the untimed schedule.

5.4 Reflowing the Current Timed Belgian Schedule

The current schedule is a timed one as defined in 5.2.

Output Data Consistency Check
The first post condition we check is that flows add up in every vertex. We have the flow law

∀v ∈ V \ (Vi ∪ Vo) :
∑
e∈v+

fe −
∑
e∈v−

fe = 0, (14)

where v+ is the set of in edges of vertex v and v− its set of out edges. This check passes,
which means that flows for each route have been properly accumulated over their edges.

Output Data versus Expectation Checks
We listed all edges sorted by decreasing flows and see if we get results that we recognize
in reality. The 10 edges with the highest calculated flows in the country are all around
Brussels, which is known as the bottleneck in Belgium. Indeed, a lot of people commute by
train to Brussels every day. Edge flows on them vary around 10000 people per day. These
are all ride and dwell edges, some consecutive.

The transfer edge with the highest flow is number 866 in the list with 3029 transfer
passengers per day, also in Brussels, between a fast IC train and a more local CR train. This
means people come from far and have to take a second local train in Brussels to get to their
jobs.

We can also look at stations. A first check is to compare the in and out numbers with
the ones we derived in the mapper. This is a close match. Where we see differences, they
can partly be attributed to the approximations described in the Mapper Section but also to
the fact that the absolute numbers we have are averages over the years 2003 to 2007 while
our OD matrix dates back from 2002. We see a growth over the years of in and out flows,
which varies a bit over different cities.

We checked the transfer flow numbers, per station. From an Infrabel expert, we know
what are stations with many transfers in reality. For the current schedule, to see if we obtain
the same list, we sum all transfer flows per station and order the stations by total transfer
flow in Figure 3. The stations in the list are confirmed to be the transfer stations.

For validation of our results for separate flows per train or train pair, we tried to obtain
data about passenger counts per ride or transfer edge, but could not get this data.

Further removed from our input data, and largely dependent on the Dijkstra algorithm
are the dwell edges. Dwell edges are never counted, because it is not practical because of



Table 3: Biggest Stations: Current, Robust Schedule Flows and Average Edge Durations
Station Name In= Ride Dwell Transfer

Out F D F D F D
p/day p/day min p/day min p/day min

BRUSSEL-NOORD 20202 304820 1.6 158844 0.8 18001 6.9
BRUSSEL-ZUID 24403 321084 1.6 174662 0.8 13715 5.4
GENT-SINT-PIETERS 18201 73259 2.7 10252 2.2 8211 8.2
OTTIGNIES 2929 52873 1.8 17343 0.9 7766 8.1
MECHELEN 8294 95020 2.0 52031 0.4 6949 6.4
DENDERLEEUW 2900 68479 2.5 23959 1.8 7381 6.7
BRUSSEL-CENTRAAL 36983 203596 1.3 59419 1.0 5419 6.3
LEUVEN 10879 80074 2.5 31865 1.2 4313 7.4
LIEGE 6554 31750 2.6 12478 0.6 3521 7.4
NAMUR 9083 43395 2.9 15861 0.6 2950 10.4
ANTWERPEN-BERCHEM 6351 52855 0.8 17751 0.8 2327 6.7
BRUGGE 8590 84921 2.0 38947 0.2 1722 10.2
CHARLEROI 5149 17968 2.3 2601 1.4 1683 10.4
ANTWERPEN-CENTRAAL 8186 24523 1.8 2430 1.0 1647 6.1
KORTRIJK 4500 25185 1.6 7020 0.2 1078 17.0
MONS 4646 18828 3.6 4050 1.4 718 14.0

moving people, so this data is entirely new. For Brussels Central we come to 58257 daily
dwell passengers, dwelling 1 minute on average.

We consider our output data starting from the current schedule, validated enough to have
confidence in our reflow procedure. We now want to improve on this schedule, by starting
from a clean slate, meaning on the untimed, unbiased schedule as defined in 5.2.

5.5 Reflowing the Untimed Belgian Schedule

We also ran our Router on the untimed Belgian schedule with the same trains, but with edge
durations de = me and transfers equal to 15 minutes. This gives the result in Table 4. Of
course as for the current schedule reflowing in 5.4 we checked and passed the flow law.
However, since the untimed schedule is an abstract one, contrary to the current schedule
reflow results from 5.4, we cannot compare with any data from reality.

We see that the untimed schedule numbers in Table 4 are different from timed schedule
numbers in Table 3. Comparing both is treacherous though. We have to realize that the
untimed schedule does not meet the requirements (9) and (10) for a final, timed schedule
yet. The requirement (11) it does meet, results in lower edge durations and averaged per
station durations D than when it has to meet (9) with se > 0 for some edges e.

The requirement (12) with Ctr = 15min it meets, allows it to optimize flows more
transfer time unbiased and hopefully better than when it has to meet (10) directly. Indeed
for the timed schedule a couple of opposite transfers will sum to the period T , one hour
here. For the untimed one, each transfer takes 15 minutes, so the sum of each opposite
transfer couple is only 30 minutes. To be able to compare the two tables, we need to pass
the untimed schedule through the retime phase first, so that it will meet (9) and (10). Apart
from this retiming, we need to realize that the current schedule is planned to be robust too,
while our untimed schedule, even if passed through retiming, will still be tight [8], meaning
that it has only the minimal amount of supplements se ≥ 0 to make the schedule feasible.
So, in general, more than these supplements will have to be included to make it also robust,
which is amongst others, needed for reliable connections [8]. This can be done by including



Table 4: Biggest Stations: Untimed, Tight Schedule Flows and Average Edge Durations
Station Name In= Ride Dwell Transfer

Out F D F D F D
p/day p/day min p/day min p/day min

BRUSSEL-NOORD 20202 287067 1.6 153069 0.8 11253 15.0
BRUSSEL-ZUID 24403 312473 1.6 169762 0.8 12660 15.0
GENT-SINT-PIETERS 18201 71557 2.7 10480 2.1 7133 15.0
OTTIGNIES 2929 52399 1.8 19399 0.9 5450 15.0
MECHELEN 8294 96507 2.0 54846 0.4 5364 15.0
DENDERLEEUW 2900 64645 2.5 21538 1.4 7885 15.0
BRUSSEL-CENTRAAL 36983 198001 1.3 61262 1.0 779 15.0
LEUVEN 10879 78962 2.5 32845 1.4 2659 15.0
LIEGE 6554 30965 2.6 12370 0.6 2951 15.0
NAMUR 9083 43755 2.9 15663 0.5 3323 15.0
ANTWERPEN-BERCHEM 6351 50715 0.8 16269 0.8 2739 15.0
BRUGGE 8590 82429 2.0 36973 0.2 1511 15.0
CHARLEROI 5149 17541 2.3 1619 1.1 2445 15.0
ANTWERPEN-CENTRAAL 8186 22454 1.8 2573 1.0 470 15.0
KORTRIJK 4500 25976 1.6 7180 0.2 1313 15.0
MONS 4646 18481 3.6 3838 1.5 757 15.0

robustness elements in the goal function [4, 17, 18]. So, under the conditions that retiming is
performed and robustness measures are taken, direct comparison with the current schedule
will be fair.

5.6 Route Registration versus Edge Countings Recommendation

In Section 5, we tried to reconstruct the intentional route of all train passengers. This is
something we have to do, because we lack this initial information.

• But, we recommend that, at ticket purchase time the train operator company asks the
traveller to supply them with the route he would normally choose himself, including
specific trains and possible transfers between them. To ease this question, some routes
could be suggested and the traveller could get these as a multiple choice list, including
an other route choice which he then mentions himself. These recorded routes could be
used in our system as initial routes, determining initial flows. This is the best possible
initial route information we could get. This does not make the reflow phase redundant.
Reflow will still be necessary for the generation of routes at ticket purchase time, and
for the mentioned reflow iterations.

• As mentioned in 5.4, we would have liked to be able to check our output data with
passenger numbers counted in real life, but could not obtain this data. So we can
recommend to the railway companies, that, in addition to the low cost and essen-
tial questions to be asked at ticket purchase time, counting passenger flows in trains
helps to complete or update the changing passenger flow picture. Since at dwell time,
passengers are moving through a train a lot, it is easier to count passengers during
riding and even counting transfer passengers between two trains. By making the dif-
ferences, using the flow law (14) at arrival or/and departure time, the number of dwell
passengers can then be derived.



6 FAPESP Extension: CODFAPESP

Dependent Iterations
In flow allocation in FAPESP, we model the expected reaction of passengers potentially
changing train routes between their constant origin destination pairs, when the timing of
their schedule is changed by the railway company.

What we have not modeled yet, is that, when the railway company changed the timing
of the schedule, people can also have the following reactions

• People who are not currently using the train, but other means of transport like their
car or a bus, are suddenly attracted by a new shorter and robust train route from home
to their daily job location and back. They could decide to buy a subscription and
become new members of the zone to zone origin destination matrix.

• Other people may be on a route that due to low fe values is less important to the rail
company. As a consequence, service on this route may go down, reflected in higher
de values along this route. Some of these people may give up using the train and
switch to other means of transport.

We call these people-reactions reflected in a Change of the OD-matrix the COD phase or
reOD phase. Obviously, decisions about buying or giving up a railway subscription happen
over a longer time, probably months or even years, than the usually, daily decisions about
which route to take to and from work. We have little hope that modeling the reOD phase
can be usefully accurate. Indeed it is much harder to model since more factors play a role
in this human decision than purely calculating the shortest duration path to work. Luckily,
there is also little need of modeling this process, precisely because changes in odzo,zd values
happen much slower than changes in fe values. We take the simple wait-and-see approach,
where we let the passengers decide for themselves and seasonly, use the result of adapted
ticket sales in our model.

This rationale leads to an adapted process with an extra longer term loop for people-
decided OD-matrix adaptations. We call this problem the CODFAPESP, for Flow Allocation
and Periodic Event Scheduling under Changing OD matrix Problem. The process flow chart
to tackle this problem is given in Figure 3.

Note that the CODFAPESP process has two nested loops with different execution fre-
quencies as well as contexts. The outer loop describes that every season, we will need to
propagate the changes in ticket sales in our model. The inner loop needs to be executed at
planning time, until converged to a satisfying solution. Only then can the new planning be
put in place in reality. We do not want passengers and the railway companies having to per-
form this inner loop in reality, implying too slowly or even never converging three-month
iterations, which is what happens now.

7 Conclusions

This paper presents three major contributions. Firstly, it builds up the theoretical extension
of the PESP retime phase with the passenger reflow phase to the FAPESP. Secondly a prac-
tical implementation of the FAPESP is demonstrated, which is not so straightforward as the
theory suggests. Thirdly, we give some recommendations to the railway companies about
data they can and should gather when they want to focus more on passenger service and
optimize the timetable from a passengers point of view.
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Figure 3: CODFAPESP Two Leveled, Two Phase Flow Chart

Showing effect of long term change in demand

In order to optimize the timetable later, the procedure described in this paper allows
to determine passenger flows for a railway network. The passenger flows, together with
the action durations, are the variable components in our minimized goal function of total
passenger travel time. This initiates a practical process for railway timetable optimization.

Quite apart from the goal of timetable optimization purposes, the reflow phase can also
be used separately to derive passengers flows for a complete schedule. This has been done
for the Belgian network for the schedule in operation and resulted in accurate passenger
flow numbers. This information has never been available before and can now be used by the
Belgian railway infrastructure company, Infrabel, to weigh choices and take decisions with.

8 Further Work

We identified some further work. We need to further verify the result of flow allocation
phase with future, partial passenger counting data as it becomes available from the railway
company. We can still use more refined routing algorithms that account for passengers
choice spread amongst all the best routes instead of only an arbitrary best route now. We
can also use more balanced routing algorithms that account for passengers choice spread
amongst good routes instead of only the best route or best routes. We want to complete the
retime phase so that the reflow and retime phase can be iterated over and convergence can
be checked. We also would like to perform FA and PESP in a single phase [14], for its own
right and to be able to compare its speed and results to our two phase iterative method.
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