Automated, Passenger Time Optimal, Robust Timetabling, using Integer Programming

Peter Sels^{1,2,3}, Thijs Dewilde¹, Dirk Cattrysse¹, Pieter Vansteenwegen⁴

¹Katholieke Universiteit Leuven Centre for Industrial Management/Traffic & Infrastructure, Celestiinenlaan 300a, 3001 Heverlee, Belgium

²Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> ³Infrabel, Department of Network Access, Frankrijkstraat 91, 1070 Brussels, Belgium

⁴Ghent University, Department of Industrial Management, Technologiepark 903, 9052 Zwijnaarde, Belgium

Table of Contents

- Business Problem
 - Task
- Problem Models: (Flow * Duration)-Rectangles
 - Per OD-Pair Grouping
 - Per Train Grouping
 - Stochastic Action Model
 - Goal Function: Stochastic Expected Passenger Travel Time
- Solution Process Flows
- 4 Remapping
- 6 Reflowing
- 6 Retiming
- Results
 - Traditional Space Time Graph
 - Per Train Grouping Graph
 - Planned Time Graph
 - Executed Optimized Time Graph
 - Executed Simulated Time Graph
- 8 Conclusions & Future Work

Task

Belgian Infrastructure Management Company: Infrabel:

"Optimize Passenger Train Service, Minimizing Passenger Travel Time"

Goals:

Increased: Passenger Satisfaction, Robustness, Capacity Usage, Transfer Efficiency

Fixed:

Infrastructure, Train Lines, Halting Pattern, Delay Probabilities

Variable:

Timing: Supplement Times at every Ride, Dwell, Transfer Action

Specifics:

One Busy Day, Morning Peak Hour

Task Notes

- Demand by Infrastructure Company, not main operator: NMBS
- Robustness against Delays necessitates Stochastic Approach.
- Minimization Passenger Time implies
 - knowledge of local passenger flows
 - specific, automatic trade-off between robustness and speedy service.
- Single criterium where all terms have same units: time.

Goal Function:

Stochastic Total Expected Passenger Travel Time: $GF(E) = \sum_{e \in E} f_e d_e$

Constraints:

Periodicity, Symmetry, Regularity, Minimum Action (Ride, Dwell, Transfer) Times, Minimum Headway Times, Macro Approach.

Per OD-Pair Grouping

Per OD-Pair Grouping

Figure: Follow all Passengers from Origin to Destination

Per Train Grouping

Per Train Grouping

Stochastic Action Model

Action: Negative Exponential Delay Distribution

Goal Function: Stochastic Expected Passenger Travel Time

Goal Function: Stochastic Expected Passenger Travel Time

Figure: D_0 is introduced supplement, $D_1 > D_0$ is delta time of next chance action. Curve maps planned time to expected time.

Goal Function: Stochastic Expected Passenger Travel Time

Belgian Passenger Service Graph: Main Figures

Table: Many Transfers between Train Categories

Train Type	Lines	Service Edges		Potential Transfer Edges to					Total
		Ride	Dwell	IC	IR	L	CR	Р	TOLAI
IC	50	2294	2244	2897	2205	1338	989	38	7467
IR	41	1390	1349	2159	1431	1181	682	36	5489
L	92	1723	1631	1319	1184	1542	238	47	4330
CR	20	528	508	989	701	237	850	54	2831
Р	2	53	51	35	34	45	50	0	164
Total	205	5988	5783	7399	5555	4343	2809	175	20281

FAPESP: Two Phased

FAPESP

Figure: Two Phased implies Iterations

FAPESP: One Phased

FAPESPbyQIP

Figure: One Phased implies Optimal

CODFAPESP: Two Nested Loops

CODFAPESP

Figure: CODFAPESP: Dependent around Independent Iterations

Origin-Destination (OD) Matrix

- Ticket OD-Matrix Currently Symmetric
- Ticket OD-Matrix Currently Formulated in Zones i.o. Stations
- Currently no Passenger Countings for Destination Station

Routing Algorithms

Dijkstra: hours

• Modified Dijkstra (includes Priority Queue): 67 min (1 core)

• Johnson: to do

Mixed Integer Linear Programming

cost

- probability of train miss is used → stochastic
- * missed train cost = 1 hour
- considers all time costs of all actions (ride, dwell, transfer, (enter, exit), knock-on delay)
- weighted with passenger numbers f_e
- modulated with typical (historical) delays

constraints

- ≤ 25% supplements allowed per train line
- time continuity constraints
- headway constraints (3 (e.g.) minutes separation between train pairs on same resource)
- some cycle constraints

Traditional Space Time Graph

Results

Per Train Grouping Graph

Planned Time Graph

Executed Optimized Time Graph

Executed Simulated Time Graph

Conclusions & Future Work

- Conclusions
 - extended PESP (retime) to FAPESP (reflow + retime)
 - implemented remapping
 - implemented reflowing:
 - generated all current local passenger flows
 - recommended data collection procedures
 - implemented retiming: optimal schedule is very robust
- Further Work
 - reflow:
 - further verification with new data
 - faster routing algorithms (Johnson)
 - more refined routing algorithms, balancing multiple path choices
 - retime: fine tune expected passenger time in retime phase
 - iterate
 - possibly combine reflow and retime in one phase

Questions

Questions? sels.peter@gmail.com www.LogicallyYours.com

References 1/3

Bouma, A., Oltrogge, C., "Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie", *ETR*, Nr 43, H. 6, pp. 369-378, 1994.

Cordone, R., Redaelli, F. "Optimizing the demand captured by a railway system with regular timetable". *Transportation Research Part B: Methodological*, 2010.

Cormen. T. H., Leiserson, C. E., Rivest, R. L., "Introduction to Algorithms", *The MIT Press. Mc Graw Hill.* 1989

Dewilde, T., Sels, P., Cattrysse, D., Vansteenwegen, P., "Defining Robustness of a Railway Timetable", *Proceedings of RailRome*, 2011.

Dijkstra, E. W., "A note on two problems in connection with graphs." *Numerical Mathematics*, Vol. 1, pp. 269-271, 1959.

Exel, M., Velzeboer, J., Warmerdam, J., CVS 2001, deel 3, pp. 1483-1498, 2001.

Goverde, R.M.P., "Synchronization Control of Scheduled Train Services to Minimize Passenger Waiting Times", *Proceedings of the 4th TRAIL Annual Congress*, part 2, TRAIL Research School, Delft, 1998.

References 2/3

Goverde, R.M.P., "Improving Punctuality and Transfer Reliability by Railway Timetable Optimization", *Proceedings of the 5th TRAIL Annual Congress*, TRAIL Research School, Delft. 1999.

Hofker, H., Suurland, M., Warmerdam, J., CVS 2000, part 3, pp. 1547-1560, 2000.

Kroon, L., Dekker, R., Vromans, M.J.C.M., "Cyclic Railway Timetabling: A stochastic Optimization Approach", Geraets, F., Kroon, L., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds), *Algorithmic Methods for Railway Optimization*. *Lecture Notes in Computer Science*, pp. 41-66, 2007.

Liebchen, C., "Symmetry for Periodic Railway Timetables", *Electronic Notes in Theoretical Computer Science* Vol. 92, pp. 34-51, 2004.

Nachtigall, K., "Periodic network optimization with different arc frequencies", *Discrete Applied Mathematics*, Vol. 69, pp. 1-17, 1996.

Schöbel, A., Knödl, H., "Trendanalyse von Verspätungsentwickelungen im Personenfernverkehr", *ETR*, Nr 11, November 2006, pp. 806-809, 2006.

References 3/3

Schmidt, M., Schöbel, A., "The Complexity of Integrating Routing Decisions in Public Transportation Models", 10th Workshop on Algorithmic Approaches for Transportation Modeling Optimization and Systems, ATMOS'10, pp. 156-169, 2010.

Schrijver, A., Steenbeek, A., "Spoorwegdienstregelingontwikkeling (Timetable Construction)" *Technical Report, CWI Center for Mathematics and Computer Science, Amsterdam*, (in Dutch), 1993.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., "Deriving all Passenger Flows from Ticket Sales Data", *Proceedings of RailRome*, 2011.

Serafini, P., Ukovich, W., "A Mathematical Model for Periodic Scheduling Problems", *SIAM Journal on Discrete Mathematics*, Vol. 2, pp. 550-581, 1989.

Vansteenwegen, P., Van Oudheusden, D., "Developing railway timetables which guarantee a better service", *EJOR*", Vol. 173, pp. 337-350, 2006.

Vansteenwegen, P., Van Oudheusden, D., "Decreasing the passenger waiting time for an intercity rail network", *Transportation Research Part B: Methodological*, Vol. 41, pp. 478-492, 2007.