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ABSTRACT

To design an optimal  passenger  train timetable  one should choose a  quality criterium or  a  combination of 
criteria. We consider the main quality criterium from a passenger perspective: journey time. This means that the 
expected time all  passengers will spend when our timetable is put in practice is minimal, even taking into 
account typical train delays. From a train operator or rail infrastructure management company perspective, there 
are further concerns too, like the number of train units that has to take part in this schedule, their frequency, the 
number of drivers and other crew members. These factors are all related to cost to maintain the schedule but are 
here considered secondary and indeed, are here kept constant.
We consider only the passenger criterium here. We analytically derive total stochastic expected passenger time 
as a closed formula, linearize it and use it as a goal function for optimizing the schedule using a mixed integer 
linear programming model.
We applied this to all 224 current Belgian train relations, passing 550 train stations and calculated an optimal 
schedule  in  3 hours.  We believe  this  mathematically  optimal  approach is  unique,  in  its  detailed model  of 
expected, stochastic passenger time, in its scale of implementation and in its use of actual current data from 
practice.
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RELATED RESEARCH OVERVIEW AND COMPARISON

Concerning  linear  modeling  of  a  train  service,  a  lot  of  theoretical  research  has  been  carried  out  already. 
(Serafini,  Ukovich,  Schrijver,  Kroon,  Nachtigall,  Goverde,  Liebchen).  The  first  schedule  that  has  been 
mathematically calculated, be it only for feasibility and not for optimality, was the one for the Netherlands, and 
is due to Kroon et al. (Kroon et al. 2007). Whether this was the schedule actually put in practice is unclear. 
Christian Liebchen claims to have produced the first  schedule that was mathematically calculated, both for 
feasibility and including some partial optimization criteria (Liebchen2007). This was the schedule for the Berlin 
Underground, containing 37 train relations.  We go further here, by firstly handling all passenger trains in a 
whole country, Belgium, and also using a more complete optimisation goal function: passenger time, which also 
includes a degree of robustness in a natural and consistent way. The idea of using expected passenger time as a 
goal  function  to  minimize  is  based  on  research  from  Vansteenwegen  et  al.  (Vansteenwegen  2006&2007, 
Dewilde 2011). The great power of this goal function is that it gives an automatic and sensible trade-off between 
a speedy yet robust service, where buffers are neither too large nor too small respectively.

INPUT DATA

We want to minimise the total expected passenger time. For this, we will weigh the time by passenger numbers 
actually present on each train. Also, the time expected is predicted from the time each section took in the past. 
This means that systematic delays present in the past, are expected to continue occurring in the future and this is 
automatically  compensated for by inserting time buffers against these delays in the produced schedule.  So 
passenger numbers as well as known historical delay distributions are input data to our procedure.
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Passenger Numbers

Passenger numbers, on each section of each train, can be derived from passenger counts. However, these are 
often incomplete. A better way to obtain these numbers, is by deriving them from train subscription and ticket 
sales. We refer to (Sels 2011) for a procedure to obtain these passenger numbers.

Train Delays

Train delays can be derived from measurements which are usually carried out by the railway infrastructure 
company. Common practice is that a time measurement is done for each train entering a station or other time 
table point. Also at exit from this station or time table point, a new time measurement is done. By subtracting  
both one can derive the local delay in practice, which is to be considered on top of the necessary minimum time. 
We assume a negative exponential probability distribution for this delay distribution. This allows us to further 
analytically derive expected passenger time. In fact, these delays with their distributions, are the only stochastic 
component and the sole reason that expected passenger time becomes stochastic.

In the selection of the historical delays, it is important that only delays that are considered to be reproduced in 
the future too, are contained in the distribution. For sure, systematic delays due to infrastructure problems are to 
be  considered  here.  A single  delay  attributed to  a  malfunctioning train  unit  should be  discarded  from the 
distribution.  Non-systematic  delays  due  to  infrastructure,  like  a  upper  line  problem  caused  by  accidental 
lightning should also be discarded. It sure is a lot of work to separate the systematic, infrastructure related from 
the accidental, non recurring delays. We will produce a schedule which is robust against these systematic delays.
We believe that this approach will correctly and carefully weigh problem areas versus non-problem areas and is 
preferable. When systematic delay data is not immediately available, an easier, be it less optimal way, to get a 
reasonably robust  schedule is  to  consider  delays that  are  averaged over  all  locations.  We initially  use this 
approach, where we impose an expected average delay of 6 seconds at each ride segment, one of 12 seconds for 
each dwell action, and one of 60 seconds for each transfer action.

TWO PHASED SOLUTION PROCEDURE

We now set up a procedure, in multiple steps, to derive passenger numbers on each section of each train. The 
procedure of letting passengers choose their train or trains, including transfers between them, from the different 
trains available , considering the current timetable available, we call reflowing. This is done using the modified 
Dijkstra algorithm (Sels 2010). We there also describe how a more neutral initial schedule than the current one 
can be used to get rid of any bias towards specific non-optimal transfer times, that are already, inherently present 
in the current timetable.

Next, we need to decide on a new, more optimal timing for the schedule. We call this procedure  retiming. 
Retiming is a much harder problem. Contrary to reflowing, where each passenger can just choose his route on 
his own, retiming cannot be as easily decoupled. A large integer linear programming model is set up. This model 
contains all necessary coupled constraints. One example is time continuity where a begin of each action in the 
action graph is equalled to the end of all predecessor actions. This holds for all types of actions: ride, dwell and 
transfer. The biggest number of constraints are the  headway constraints,  where for each pair of trains on a 
certain resource, a separation time of 3 minutes is enforced. For speeding up the MILP solver used, a certain 
type and number of cycle constraints is also enforced. Also, the relative amount of time supplements allowed 
per train line is limited to maximum 25%.

Reflowing takes as input, a given schedule, meaning the time t_e for each action edge e, being a ride action, 
dwell action or transfer action, and produces flow numbers f_e, representing the number of passengers on these 
same action edges. Retiming, then, takes these flow numbers f_e per edge and produces a duration d_e per edge. 
The result of these two phases is that each action edge has a flow f_e and a duration d_e. This is represented in 
figure 1.  Of course,  when a  schedule is  retimed,  passengers can react differently on this new schedule by 
choosing another route, for example, because a transfer is becoming too tight or too long. The first case makes 
the risk of missing the transfer too high. The second case means the certainty of having to wait very long.

ITERATION UNTIL CONVERGENCE
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We can consider the subsequent reflowing and retiming an interplay of the parties: passenger and rail companies. 
Both processes adapt to the change of the preceding process. This means iteration should be carried out over 
these 2 subsequent phases, until convergence, before putting any schedule in practice. Indeed, reflowing should 
be done in computer memory, not by actual passengers in practice, on a still sub-optimally timed schedule.

RESULTS AND DISCUSSION

We produce both flow numbers f_e and durations d_e, and also actual times for each time table point. We 
defined  a  new way to  display  these  results  in  two dimensions.  The  vertical  dimension  represents  the  f_e 
numbers. The horizontal dimension represents the durations d_e of subsequent actions and also clearly indicates 
their order in time. Figure 2 gives a representation of two trains, on the top for an unoptimized, current schedule 
and at the bottom for an optimized schedule. This is the result of one reflow-retime iteration only.

Figure 1: Current schedule of two trains (top) and optimized schedule of same two trains (bottom)

For proving that a schedule is better than the one we started with, it is important to be able to show that the  
expected passenger time has been lowered. This is shown in figure 2. The left half of this figure shows train 
time while the right half shows passenger time. In each graph, all times are categorised as summed ride, dwell, 
transfer  times,  each time also as  minimum part  (darker  colour  below)  and supplement  part  (lighter  colour 
above). We also added the headway times and their expected times corresponding with headway supplements on 
top. The blue shaded areas refer to the fact that for these actions, the preceding ride action and the action itself 
have been convoluted to calculate the expected time.

CONCLUSIONS

We  constructed  a  two  phase  procedure  that  models  the  passengers  decisions  (reflowing)  and  the  railway 
companies decisions (retiming). This can be iterated over in computer memory before the final optimal schedule 
is put into practice. After convergence, the produced schedule has the lowest possible expected passenger time, 
taking into account typical delays and passenger flows on every section. One iteration, for all hourly passenger 
trains in Belgium, currently takes about 3 hours calculation time.

FURTHER RESEARCH
First, for ride dwell sequences, we need to further tune the goal function. Dwell action minima that have a 
probability to be exceeded, in the cases that they are exceeded, are still overly penalised, resulting in a schedule 
that weighs robustness a little too high resulting in a lower speed of service. 
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Secondly, we want to iterate over reflowing and retiming until convergence.

Figure 2: Results on 224 trains in Belgium: 
Expected Train Time Reduction of 30% (left) and Expected Passenger Time Reduction of 48% (right).

Optimistic reduction results are due to currently still over-stressing of robustness of ride-dwell sequences.
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