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Preface

“If at first, an idea is not absurd then there is no hope for it.”

– Albert Einstein

As a consultant to Infrabel - the Belgian railway infrastructure manager - and
being assigned the task of automatically timetabling all Belgian passenger trains
with the objective that passengers will experience the lowest possible travel
time in practice, I was faced with a major challenge. It had never been done
before for an entire country. So I had to learn what the state of the art in
railway timetabling research was. We used many ideas present there. This
does not mean that going for a full fledged PhD was a strict necessity. Indeed,
the research publication requirement of a PhD means that there is a lot of
extra work in the discussing, writing, reviewing and making publishable of
papers that report ones results. However, this extra effort creates the upside
of reaching a larger as well as broader audience. This was a major motivation.
Indeed, drive is all about objectives. We reached these objectives now; we
had a tough yet fun puzzle time but also produced timetables which promise
reduced passenger travel time. Published papers are available to the railway
and research community explaining how this can be done. I could not have
done so alone. So I want to thank all people who contributed, knowingly or
unknowingly.

I am very grateful to Professor Pieter Vansteenwegen for seeing the value of
the idea of expected passenger time in practice as the objective function for a
timetable and initiating research in this area [44, 45]. It is a powerful concept
and has been and still is a motivating goal. I am also indebted to Pieter’s
serious revision of and insightful comments on my paper drafts. This often
triggered quite some technical, presentation and restructuring discussions and
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invariably led to better final versions. I also thank my eagle eyed colleague
and co-researcher Dr. Thijs Dewilde for the reading of my writings and his
useful comments, both on high level issues and on the very smallest details. He
spotted everything. I am also grateful to Professor Dirk Cattrysse for his paper
comments and his calming demeanour, humour and wisdom.

We wish to thank Infrabel for the fruitful cooperation and trust during these 6
years. Our thanks go especially to Eric Vercauteren who defined what Infrabel
wanted and did not want from a timetable and was always willing to answer
my countless questions. I also think back with pleasure to the discussions
I had with Alain Wenmaekers about the best ways to code something and
about the occasional C++ or Qt issue as well as to the various entertaining
pseudo-religious debates. It was fun. Thanks also go to Stéphanie Godart for
the work on defining route variants in all Belgian stations, to Anneleen Van
de Mergel and TrafIT GmbH and VIA Consulting & Development GmbH for
defining the Infrabel set of parameters for LUKS and OnTime simulations. I
thank Katrien Pauwels for sharing her knowledge about and helpfulness with
Infrabel databases and to Bertrand Waquet for the preparation of train traffic
scenarios for our first platforming paper when this part was not automated
yet. Thanks also go to Mathieu Senelle for proofreading our papers as Infrabel
representative.

We are indebted to Tove Møller of Banedanmark for reacting on our claim, made
at the IAROR conference in Copenhagen, that we are able to automatically
timetable a country like Belgium and asking us to try this for Denmark. Katrine
Meisch was instrumental in the challenging task of preparing the input data
for this project. She managed to combine this with her other obligations to
Banedenmark. Our cooperation could not have been better. So was the result; a
timetable for all Denmark’s passenger trains that would save passengers 2.9% of
journey time on average. Thanks got to Jens Parbo for proofreading our paper
about these results for Denmark and for his likeminded spirit in supporting the
cause for passenger oriented planning in his country.

We also wish to thank Professor Rob Goverde and Nikola Bešinović for the
many discussions on timetable quality criteria and quality levels. This certainly
cleared up things but also convinced us further that expected passenger time as
an objective function covers most of these criteria and is a good objective to go
for. Thank you, Jonas Harbering, for the enjoyable NP-complete discussions
and the checking of our always-feasible proof. Thanks to all of them for the fun
nights out on various conferences from Barcelona to Tokyo.

One other essential factor of our ability to produce useable timetables is the
unique performance of the Gurobi solver, as well as the excellent and forthcoming
support of Gurobi personnel: Greg Glockner, Sonja Mars, Renan Garcia,
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Cynthia Sosa, Tonya Peek, Mark Steidel, Tracey Pesanelli and Christopher
Riche. They are a truly exceptional team, increasing standards of performance,
efficiency and support in the industry.

I find the following also a fascinating thought. Imagine how much of this
work was only possible thanks to the centuries of development of science and
technology continuously building upon and improving itself. From Newton’s
laws of motion and differential and integral calculus to Moore’s descriptive law
of computer calculation speed, to computer network and multicore development,
we needed and used all of it. So thanks to these giants and the support of their
shoulders.

I am grateful to my parents, my family, my friends and my teachers for triggering
my curiosity, for showing interest, for listening and encouraging, for getting
me to know the challenge and the hardship of, the needed persistence for and
the ultimate satisfaction of creative intellectual labour; for the agony and the
ecstasy.





Abstract

The two topics of this thesis are macroscopic railway timetabling and station
platforming and routing. These problems are challenges that are faced by all
railway infrastructure companies. This thesis was carried out in cooperation
with Infrabel, the Belgian railway infrastructure manager.

Macroscopic Cyclic Timetabling of Entire Countries

In the macroscopic Train Timetabling Problem (TTP), the goal is to obtain,
for each train and for each station it visits, an arrival and a departure time.
Sufficient time should be provided for trains to ride from one station to the
next. In stations, trains that stop should be allowed a minimal stop time, so
that passengers can board, transfer or leave. Of course trains cannot collide on
the same track and should even be separated by typically 3 minutes for safety
reasons. No commercial software tools exist yet that automatically solve this
problem. Over the last decennia, research at universities has led to automatically
constructed ’draft’ timetables for the Netherlands, but these timetables still
lack robustness against small recurrent delays. Subsequent optimisation to
improve robustness was carried out, but leaves trains in the same order as in
the input timetable, which constitutes a suboptimal approach compared to
simultaneous optimisation for train order and robustness. A timetable for the
37 trains of the Berlin underground was also constructed automatically, but
also lacks robustness. For Belgium, about 200 hourly trains have to be planned,
but Infrabel additionally requires that the timetable delivers minimal passenger
travel time in practice. This implies it will be robust. This was a new modelling
and computational challenge. This time, which has to be minimised, includes
journey time and small recurrent delays. In our latest paper, we also include
excess journey time, which is the sum of waiting time at departure and at
arrival.
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vi ABSTRACT

We are able to generate a timetable for all 196 hourly Belgian passenger trains
from the 2013 timetable in a computation time of about 2 hours. Assuming
common delays, the reduction of expected passenger time is 3.8% and the
average missed transfer probability goes down from more than 10% in the
original timetable to less than 3% in our timetable. Additionally, we also
optimised the Danish timetable with 88 trains in about one hour, with a
reduction of 2.9% of expected passenger time and reduced percentages for the
probability of missing a transfer that are similar to the Belgian case.

Station Train Platforming and Routing

For the problem of station platforming and routing, the arrival and departure
times of trains are considered as given by the timetable. The sequential planning
of the timetable and then station platforming and routing corresponds to the
process currently used at Infrabel and almost all other railway companies. The
challenge is then, to assign, per station, a platform track to each train such that
no two trains are using the same infrastructure element at any time. This Train
Platforming Problem (TPP) has been intensively studied and solved during
the last decennia. Computation times are of the order of seconds per station.
However, realisation of these automated methods at railway companies or into
commercial tools for the railway industry has been limited. In most research,
in the TPP formulation, train arrival and departure times are still allowed to
be varied within limits. In practice at Infrabel, contrary to most research, the
TPP formulation is one whereby train arrival and departure times are fixed.
This is the case because this allows easy integration into their process flow.
The preceding timetabling phase is supposed to decide on all train arrival and
departure times. As a consequence, it is of course possible that after platforming,
if not all trains can be assigned platforms and routes, the timetabling has to be
adapted so as to make the blocking platforming problem easier.

We solve the platforming problem as defined by Infrabel, by developing and
integrating a platforming tool in the Infrabel tool flow. So one can consider our
platforming efforts as applied research. This tool produces a picture showing the
current - manually made - platforming plan and indicates any conflict between
any pair of trains in the station area.

We then generate an assignment without conflicts, of as many trains to platforms
as possible. Sometimes, not all trains can be assigned to platform tracks and
only a partial solution is given. This means that in practice, some trains cannot
be assigned or otherwise the arrival and/or departure times have to be adapted
manually. In the last case the macroscopic timetable also will have to be changed
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again. We also produce a picture of our optimised assignment which consistently
shows that indeed, in our solution, there is no single conflict left. We are able
to automatically generate train to platforming assignments for all 530 Belgian
stations in only 10 minutes of optimisation time for all 530 models together.

Both our macroscopic timetabling tool and platforming and routing tool are
integrated and useable at Infrabel.





Beknopte Samenvatting

De twee hoofdonderwerpen in deze thesis zijn het opstellen van een dienstregeling
en, voor elk station, het opstellen van een perronspoortoewijzing inclusief
keuze van routes. Deze problemen zijn uitdagingen voor alle beheerders van
spoorweginfrastructuur. Deze thesis werd uitgevoerd in samenwerking met
Infrabel, de beheerder van de Belgische spoorweginfrastructuur.

Een Macroscopische Cyclische Dienstregeling

In de macroscopische treindienstregeling is de doelstelling om, voor elke trein en
voor elk station dat de trein aandoet, een aankomst- en vertrektijd te bepalen.
Voldoende tijd moet voorzien zijn om van een station naar het daaropvolgende
te rijden. In elk station waar een trein stopt, moet voor die trein ook voldoende
stoptijd voorzien zijn om reizigers te laten in-, over- of afstappen. Uiteraard
mogen treinen op hetzelfde infrastructuurelement ook niet met elkaar botsen
en moeten ze om veiligheidsredenen zelfs gescheiden worden door typisch 3
minuten. Er bestaan nog geen commericiële softwarepakketten die dit probleem
automatisch oplossen. In de laatste decennia leidde onderzoek aan universiteiten
tot het resultaat van een automatisch geconstrueerde dienstregeling voor de
Nederland, maar deze dienstregeling is niet robuust tegen veelvoorkomende
kleine vertragingen. Een dienstregeling voor de 37 treinen van de Berlijnse metro
werd ook automatisch berekend, maar daarin ontbreekt ook robuustheid. Voor
België moeten ongeveer 200 uurlijkse treinen gepland worden, maar Infrabel
eist ook dat de dienstregeling een minimale verwachte reizigerstijd in praktijk
oplevert. Dit impliceert robuustheid. Dit was een nieuwe uitdaging zowel
qua modellering als rekenkundig. In deze te minimaliseren tijd zit de totale
trajecttijd, maar ook de tijd van vaak voorkomende vertragingen. In onze
laatste paper is in het objectief ook de wachttijd bij vertrek en de wachttijd bij
aankomst vervat.
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We zijn in staat om een dienstregeling te genereren voor alle 196 uurlijkse treinen
uit de Belgische dienstregeling van 2013 in een rekentijd van ongeveer 2 uur.
Wanneer we standaard vertragingen veronderstellen, kunnen we de reizigerstijd
reduceren met 3.8%. De kans op een gemiste overstap daalt van meer dan 10%
in de oorspronkelijke dienstregeling naar minder dan 3% in de geoptimaliseerde
dienstregeling. Ook de Deense dienstregeling met zijn 88 uurlijkse treinen
hebben we geoptimaliseerd. Dit gaf een reductie in verwachte reizigerstijd
van 2.9% in een rekentijd van 1 uur. De kans op gemiste overstappen werd
gereduceerd met gelijkaardige percentages als voor België.

Treinen Toewijzen aan Perronspoor en Route

Voor het probleem van perronspoor- en routetoewijzing in elk station
beschouwen we de aankomst- en vertrektijden van treinen als gegeven
door de macroscopische dienstregeling. De sequentiële aanpak van de
dienstregeling en daarna de perronspoor- en routetoewijzingen per station
is in overeenstemming met de huidige praktijk bij Infrabel en waarschijnlijk
alle andere spoorwegondernemingen. De uitdaging is dan om per station, aan
elke trein een perronspoor toe te kennen, zo dat op geen enkel moment twee
treinen hetzelfde infrastructuurelement gebruiken. De laatste decennia is er
veel onderzoek naar dit ’Train Platforming Problem’ (TPP) gebeurd en het
probleem is essentieel opgelost. Rekentijden zijn van de orde van seconden per
station. Echter, de implementatie van deze automatische methodes werd nog
niet doorgedreven tot een tool dat in gebruik is bij spoorwegondernemingen. We
lossen dit op door de ontwikkeling en het integreren van een tool bij Infrabel.

Deze tool genereert een grafische voorstelling van de huidige - manueel
aangemaakte - perronspoortoewijzing en duidt daarop elk conflict tussen
treinen aan. We genereren dan een geoptimaliseerde perronspoortoewijzing die
conflictloos is en zo veel mogelijk treinen op perronsporen plaatst. Soms kunnen
niet alle treinen geplaatst worden en dan geven we een partiële oplossing. Dit
betekent dat in praktijk soms niet alle treinen geplaatst kunnen worden of dat
de aankomst- en/of vertrektijden manueel moeten gewijzigd worden. In het
laatste geval moet ook de macroscopische dienstregeling worden gewijzigd. We
produceren ook een grafische voorstelling van de geoptimaliseerde perronspoor-
toewijzing die consistent toont dat er inderdaad geen enkel conflict overblijft.
We zijn in staat om automatisch een perronspoortoewijzing te genereren voor
alle 530 Belgische stations samen in slechts 10 minuten rekentijd.

De programmas voor het genereren van de macroscopische dienstregeling en
perronspoortoewijzing zijn beide geïntegreerd en bruikbaar bij Infrabel.
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Chapter 1

Overview

“Some puzzles are too good to share.”

– Doctor Gregory House

“Some solutions are too good to hide.”

– Peter Sels

This PhD thesis is presented based on the published papers during the time
of PhD research. The papers bundled in this document were written in the
past 5 years by Peter Sels as first author. These were all revised by Dr. Thijs
Dewilde, Professor Pieter Vansteenwegen and Professor Dirk Cattrysse before
they were submitted to conferences and journals for review. In this thesis, papers
are bundled, structured and every time introduced by a short, non-specialist
description of its contents. These introductions do not describe the literature
in detail because this is done in the papers themselves. The bibliography at the
end of this thesis only mentions the publications that were cited in the thesis
introduction, the introductory text to all papers and the thesis conclusion but
not the publications that were cited in each of the reproduced papers.

The timetabling tool RhinoCeros and the platforming and routing tool Leopard
were entirely coded by Peter Sels in his role as Logically Yours consultant to

1
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2 OVERVIEW

Infrabel, the Belgian railway infrastructure manager.

This first section discusses the relation between the different papers and brings
these together. It also provides an overview of what has been realised. Chapter
2 presents the main papers published on timetabling while chapter 3 presents
the papers dealing with platfoming and routing in station areas. These chapters
form the body of work performed for the PhD. Chapter 4 mentions other
abstracts or papers that were published as first author, while chapter 5 does this
for papers published as co-author. Chapter 6 concludes and hints at possible
further useful work.

1.1 Planning

1.1.1 Traditional Planning Stages

In the railway industry, it is common practice to separate the planning of
operations into four stages [14, 4, 21]. First, it is decided from where to where
trains will run and also at which stations they will stop and which stations they
will just pass. This is called line planning. When these paths are decided upon,
the question arises at what times trains should arrive at and depart from each of
the visited stations. Planning this is called timetabling. Often a timetable with
a fixed period is preferred. Any train service is then repeated after this period,
usually an hour, in the same way. In that case this is called cyclic timetabling.
Once it is clear what ride and dwell operations trains will be occupied with at
which time, specific rolling stock, like locomotives and train cars (wagons) need
to be assigned to these operations. This is called rolling stock planning. Once
it is known where rolling stock is needed at which time, one has to plan the
operations that train employees, like drivers, controllers and maintenance crews,
have to carry out to keep this rolling stock running. This is called personnel
planning or crew scheduling and rostering.

1.1.2 Reasons for Planning

So much for the tradition of planning, but the question may arise why we need
to plan trains at all. We do not do this for cars. One sufficient reason is that
train passengers need to know when they can expect a train to depart at a
station so that they know when to arrive there, preferably just some minutes in
advance of the departure time. Similarly, they want to know when they will
arrive so that they can plan to take a train that arrives in advance of the time

http://www.infrabel.be
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their meeting starts at the arrival place. So departure and arrival times of all
trains need to be known to potential passengers.

But knowing these times is also important for coordination between trains in
the network itself. True, since the arrival time of a first train and the departure
time of a second train need to be planned in a coordinated way if it is expected
that a lot of people will transfer from the first to the second train. Indeed,
in that case we do not want the time difference to be so big that people will
have to stand waiting on the platform too long during this transfer. On the
other hand, it cannot be so small that the least delay of the first train causes
passengers to miss the transfer to the second train. So there will be an optimal
time difference between the arrival time of the first and the departure time of
the second train. This can be calculated during timetabling.

So, the above two reasons for planning, for departing and arriving passengers
and for transfers, have to do with coordination of train planning with the
external planning of passengers respectively with self-coordination of trains that
both belong within the system. Coordination is also necessary at points where
resources are too restricted to allow just any amount of train traffic to come
in, or/and go out, at any time. This is the case, for example, on an open line
track between two stations. There, only one train can ride at a time. This is
why tracks are divided into sections and signals are added: to guarantee that
only one train is allowed per section at a time. This is the most restrictive and
demanding type of constraint on macroscopic train timetabling.

Another restriction is that, inside a station which has a limited amount of
platform tracks as well as connectivity between open lines between stations and
these platform tracks, we cannot allow trains to just arrive and depart at random.
We have to time these actions precisely to allow for use without train collisions.
The planning inside train stations at this lower level is called station planning,
the train platforming problem (TPP) or the platforming and routing problem.
Note that both macroscopic as well as microscopic planning approaches exist
aiming at solving this problem. Microscopic models take into account all signals,
block sections and liberation points, while macroscopic models do not model
these to the full extent. In manual practice, the platforming problem is often
only solved after timetabling has been carried out. To date, even in automated
planning research, this is still the case, because simultaneous optimisation of
timetabling and platforming for entire countries at once is still considered to be
too hard.
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1.1.3 Two Phased Planning in this Thesis

This thesis’ first focus is on macroscopic cyclic timetabling. A macroscopic model
typically considers large scale networks but does not model the infrastructure in
detail, like switches or number of platforms. A microscopic model does consider
these infrastructure details but typically models smaller network areas like one
or a few station areas only. In Belgium, at Infrabel, timetabling is done at
a macroscopic level and its feasibility inside stations is later verified at the
microscopic level. This thesis also deals with this second problem of feasibility
checking in stations. It does this by platforming and routing inside stations of
as many as possible of the macroscopically scheduled trains.

1.2 Macroscopic Timetabling

1.2.1 A Timetable Objective is Required

As mentioned, macroscopic planning is about deciding on good train arrival
and departure times at every station. The question is what it means to call
a timetable good. Many objectives can be chosen for a timetable. Objectives
depend on the stakeholders. The train operator will prefer a timetable that
is cheap to operate, for example with a few less train sets, but still offering
a good service to its customers, the passengers. The passengers will prefer a
timetable that brings them quickly from their origin station to their destination
station. They will also want that this time varies little from day to day. The
railway infrastructure company, Infrabel, will benefit from a timetable where
many trains use its infrastructure lines or sections for which it makes a good
profit. This means that such lines or sections are used intensively yet without
wearing these out too quickly. In this thesis, because we think passengers
are the ultimate and most important stakeholders, we put ourselves in their
position and aim to generate a timetable that has minimal expected passenger
travel time in practice [33, 32, 37, 35]. This objective includes ride time, dwell
time, transfer time as well as statistical expected delays and their knock on
delays these cause for other trains. The objective contains this total expected
journey time for all passengers together. During mathematical optimisation of
the timetable, sometimes a journey time for one big stream of passengers could
be shortened at the expense of increasing the expected journey time for another,
smaller stream of passengers. Making this kind of trade-offs is the essence of
good timetabling, whether it is done manually or automatically.
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1.2.2 The Control Domain: Thousands of Time Supplements

We know now what we want to achieve, the objective defined in the previous
section. But how can we achieve this? What parameters can we change that
affect it, for better or worse? For each train, we can calculate minimal ride
times from a station to the next station. When these trains stop in a station, we
can preset minimal stop times that allow passengers to exit or enter these trains.
When passengers have to transfer between trains, we can calculate their walking
time between those trains and take this as minimum time between the arriving
and departing train. All these minima have to be respected by a timetable. One
can only add supplementary time to it, on top of these minima. We call these
extra times ‘time supplements’ or simply ‘supplements’. It will seem intuitively
logical that very large supplements on ride, dwell or transfer activities are not
ideal. Indeed, passengers then have to wait very long and lose time. But also if
these supplements are very small, a negative effect occurs. Indeed, the slightest
primary delay on that activity then makes that the timetable cannot be realised
as planned. This would mean that all planning was unrealistic and missing the
point. In railway timetabling, one also needs to separate trains on common
tracks by a minimum headway time. In a macroscopic approach, this time is
usually about 3 minutes. These times can be seen as an extra set of minimum
times that have to be respected. In cyclic timetabling, on top of this, we have to
make sure that for every planned train in the system, one hour later, a similar
train with the same timing will occur. This train can again potentially interfere
with all the other trains. This imposes again a new set of constraints to be
respected. So the delicate art of cyclic railway timetabling on the mathematical
level comes down to the following. Choose a set of time supplements (about
10000 for Belgium) so that all ride, dwell, transfer, headway minimal time
constraints as well as hourly periodicity constraints (about 100000 for Belgium)
are respected. Respecting these constraints is the minimal requirement. A
timetable respecting these constraints is called a feasible solution. A timetable
that also achieves a good value for the objective is called a good solution and
that is what we want to achieve. Preferably we want one that is better than
the current timetable in terms of the objective. Can we achieve that? It is
something I would hate to do without a computer but love to do with one. So
let’s go.

1.2.3 Previous Research

Since there are no tools available to timetable practitioners, one may wonder
why this is the case. Is this problem impossible to solve automatically? What
is the state of the art in research? Infrabel wants to arrive at a schedule where
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every hour, the same set of trains is repeated with the same timing. Previous
research into this kind of optimisation approach resulted in the Periodic Event
Scheduling Problem (PESP) formulation [41].

This model defines the constraints that need to be fulfilled to result in a feasible
timetable. Note that the term ‘feasible’ has been defined in the literature on the
microscopic level [11]. According to this definition, a feasible timetable has to be
realisable, which means that it has sufficient time provided for all processes (run
and dwell activities) and must also be conflict free, which means that it cannot
contain any conflict between any pair of trains on the same physical resource
(track, route). Contrary to this definition, our definition of ‘feasible’ stems from
the rules the human planners at Infrabel use in their macroscopic timetable
construction. This entails two aspects that can be different from the microscopic
definition of feasibility. (i) Infrabel computes minimal process times for run
activities and adds a 5% margin on top of this. The resulting times are taken as
minimal times in our software. Because of the 5% addition, this could be more
conservative than the strict definition of ‘realisable’. (ii) Human planners use a
rule of thumb of 3 minutes minimal headway time between subsequent trains
as sufficient to guarantee ‘feasibility’. This could be either more conservative
or less conservative than the strict definition of ‘conflict free’. Indeed, when
analysed on the microscopic level, depending on trains length, speed and other
factors, 3 minutes could be either too much or too little minimum headway
time to avoid conflicts. Even though, at Infrabel, human planners aim to stick
to their two rules, it is difficult to do so due to the complex interdependencies
of a timetable. Additionally, the fact that multiple human planners work on
one large problem and will not always notify each other of modifications they
carried out, can complicate the job. In practice, we do indeed notice that current
timetables do not respect these two rules in all places for all trains. However,
with our timetabling tool, RhinoCeros, we guarantee that any timetable it
produces respects both Infrabel rules in all places for all trains. In this sense we
guarantee ‘feasibility’ on the macroscopic level, as the human planners interpret
it. Generating timetables that are ‘feasible’ according to the definition in the
literature would require accurate calculation of minimal headway times between
all pairs of train that could be subsequent in the timetable being produced.
Calculation methods of these headways are known in the literature, but the job
of collecting all the input data needed for this is huge and to the best of our
knowledge has not been carried out before on a national scale.

The PESP model in itself, does not guarantee to generate good timetables in any
sense, just feasible ones. So in the timetable solutions produced by a bare PESP
model, there could be very large time supplements planned at ride or dwell
activities of trains or very large or small time supplements planned at transfer
activities of passengers. Note that supplements that are really small make that
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the timetable is not robust against even very small primary or secondary delays.

An example of a research toolset that implements this PESP model is the
CADANS and DONS system [27, 24]. CADANS and DONS were developed at
the Nederlandse Spoorwegen (NS), the Dutch main train operating company. A
somewhat similar initiative at the German railways resulted in the timetabling
tool TAKT [22, 13, 23, 18]. The timetable generating tools CADANS and TAKT
are known to have generated feasible national timetables for The Netherlands
[24, 16] and Germany respectively. However, for both these processes, no
timetable quality criterium or objective function was defined nor optimised. For
the CADANS produced timetables, it is known that post optimisation towards
more robustness is needed [15]. This is the case because CADANS adds a
fixed amount of supplements according to a percentage of x% of the minimum
times spread out over the activities (ride, dwell) of each train. The value of
x can be specified in the CADANS input. A typical value is x = 5%. This
post-optimisation for robustness adapts time supplements but does not allow
swapping orders of trains. This means that not the full search space is searched
and that the resulting timetable can be suboptimal in this respect. TAKT uses
a satisfiability (SAT) solver which also does not create robust timetables since it
minimises the sum of total slack. This will introduce time supplements equal to
zero on critical paths which is essentially non-robust against delays. Timetables
that are not robust are basically not useable yet in practice. Indeed, even the
slightest delays will make that the real arrival and departure times of trains
will deviate from the planned timetable.

This effect will even increase in time if the timetable is also not stable [12, 42].
Essentially, a stable timetable can have ‘negative’ buffer times, but the delays
they inject into the timetable should then be absorbed by sufficiently large time
buffers elsewhere so that delay propagation remains limited, instead of rising
continuously. So stability follows from feasibility, but not the other way around.
Since CADANS and TAKT have no objective function, they don’t strive for
stability either, but their hard constraints guarantee feasibility which in its turn
guarantees stability.

1.2.4 What Our Research Solves

What is needed to avoid these problems of undesirable supplement values is
an objective function that penalises time supplements that are too large or
too small. [19, 20] demonstrate that these problems can be partially solved by
adding an objective function to the bare PESP model. Their case study is the
timetable of the Berlin underground. This metro network has 37 train lines.
They report that only some transfers were still assigned a very large duration.
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Not surprisingly, these transfer durations were not present in the objective
function. We conclude that (i) all durations that matter for the objective of a
timetable should be somehow present in the objective function and (ii) to the
degree that they matter for the objective. Since our objective is to minimise the
expected passengers time in practice, this means that, for a certain duration,
the number of passengers experiencing that duration will be the weight factor.
This also means that each expected duration should be formulated as a function
of the planned durations, which are the decision variables of the timetabling
model. Therefore, the expected durations that should be present in the objective
function and not the planned durations, because the expected durations are
what matters in practice.

This is the first major part of what our timetabling research in this doctorate
essentially adds: the objective of expected passenger travel time in practice
[31, 33, 32, 36]. Minimising this objective avoids that all too large or all too
small time supplements are chosen. This results in timetables that are effectively
useable [37, 35]. Other major work has been carried out on adding our own sets
of supplementary constraints to the PESP model [37] so that it solves more
quickly. These are cycle sets as discovered by [24] and further elaborated on by
[25] and [19].

For Infrabel, we developed the tool RhinoCeros that implements this PESP based
model, extended with this objective function and extra cycle set constraints. We
are successful in applying RhinoCeros on the network of all 196 hourly passenger
trains in Belgium. The result is that in about 2 hours of computation time, we
can generate a timetable that is feasible on a macroscopic level, but that is also
good for passengers. Our optimised timetable is even better for passengers than
the manually constructed 2013 timetable that served as starting point, since
according to our model, it requires 3.8% less passenger time in practice. Our
calculations also predict that the average missed transfer probability goes down
from 13.9% in the original timetable to only 2.6% in our optimised timetable.
We also applied RhinoCeros on the Danish network of all 88 passenger trains and
in about 1 hour we could construct a timetable with similar beneficial properties.
Expected passenger travel time is reduced by 2.9% and the probability of a
missed transfer goes down from 11.34% in the original timetable to 2.45% in
the optimised timetable.

To the best of our knowledge, it is the first time that a timetable for an entire
country has been generated with a system that also tries to optimise an explicit
and complete objective. In both cases, for Belgium and Denmark, our work
resulted in a timetable that is significantly better than the current one in
terms of our chosen objective. These timetables should be directly beneficial to
passengers since they save them several percentages of passenger travel time in
practice. Note that these timetables also contain a degree of robustness against
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delays, more specifically, the degree of robustness that is ideal for passengers,
not too little, not too much.

1.2.5 Benefits to Infrabel and Passengers

Currently, at Infrabel, about 20 human timetablers need to keep shifting train
arrival and departure times until (i) all minimal ride times from station to
station are respected, (ii) all minimal dwell times in stations required by the
train operating company are respected and (iii) all subsequent pairs of trains
are separated by the minimum headway time of three minutes on open line
tracks. Adapting a train arrival or departure time with the aim to satisfy a
constraint of type (iii) often again breaks a previously satisfied constraint of type
(i) or (ii) and vice versa. In practice, this takes many months and even after
that, the manually constructed macroscopic timetables still contain violations
of constraints of types (i), (ii) and/or (iii). Every year, Infrabel uses the same
process of planning the timetable for the next year. This means that, at some
point, planning time is simply over and typically some violations remain present
in the timetable being planned.

Our software, RhinoCeros, developed for Infrabel and totally integrated there,
guarantees that, for any solution it produces, all constraints of all three types
(i), (ii) and (iii) are satisfied. No single violation occurs. RhinoCeros respects
the line planning given by the original timetable and also guarantees perfect
periodicity with one hour for all train relations. For the Belgian case, the
resulting timetable is usually produced after about 2 hours of calculation time.

So increased speed of the timetabling process is the first advantage and a
resulting timetable without a single constraint violation is the second. From
our optimisation experiments, we conclude that the third advantage is that our
resulting timetables typically also imply less expected travel time in practice
to the passengers. A typical figure is a 3.8% reduction. Rolling stock planning
and crew scheduling were not part of the scope of this thesis. However, a rough
preliminary analysis of the needed rolling stock based on the total number of
expected train hours in practice showed that no more such hours occurred in
the optimised than in the original planning. This would mean that in practice,
no more train sets would be needed to run the optimised timetable than the
original one.

A faster timetabling process allows Infrabel to make timetables for more versions
of line planning. Indeed, with RhinoCeros, Infrabel can now automatically
evaluate the total expected passenger time associated with the automatically
constructed timetable, given a fixed amount of computation time, for each
of these line plannings. It can then select the combination of line planning
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and associated optimised timetable that results in the lowest total expected
passenger travel time.

1.3 Station Platforming

1.3.1 Station Platforming After Macroscopic Timetabling

When a macroscopic timetable has been defined, the next question is if it can
be realised in every station microscopically. It could indeed be the case that
too many trains arrive in a certain time window in a certain station and that
consequently, not all these trains can directly ride through to their platform
tracks. Similarly, not all trains may be able to leave from platform tracks to open
lines leading to the next stations because they use crossing or identical tracks
at the same time. The combination of simultaneously incoming and outgoing
trains makes matters even more complex. This depends both on their timing,
their chosen platform tracks and the available routing variants connecting the
open lines the trains come from or go to and the platform tracks. So for some
station, given the train arrival and departure times dictated by the timetable,
some platforming and routing choices would make the timetable feasible in that
station, while with other such choices, it could become infeasible. Note that we
consider solving the macroscopic timetable first and then all the platforming
and routing problems in all stations. If in a station, none of all the possible
platforming and routing choices allows the timetable to be implemented, the
timetable will have to be changed cleverly. Often shifting a few train’s arrival
or/and departure time by a half or a full minute or so can solve this. However,
in our method, this work still has to be performed manually.

Note that we can not claim that it is guaranteed that a 100% placement of
trains on tracks is possible. This depends on whether the number of trains
and their arrival and departure times can be mapped feasibly on the station’s
infrastructure. If too many trains are planned or too many trains arrive or
depart simultaneously this will be impossible. What we do claim though, is
that if it can be done, according to the rules for feasibility that Infrabel uses,
our tool Leopard will find a solution that platforms all 100% of trains. It may
find a solution the planners found as well or a different one. It will usually find
a solution much quicker.

Some recent research has shown that it is possible to solve timetabling and
routing and platforming together. However, we could only demonstrate this
for areas around stations [9, 10, 6]. These solutions are feasible according to
the Infrabel criteria. [1] demonstrate this at the signalling level, generating
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microscopically feasible solutions, for a case study for a corridor of 15
macroscopic points with 40 trains. These approaches consistently use some form
of iteration. In general it has not been proven that this leads to the optimal
solution. For [1], for the minimum headways in the last iteration, the solution
is optimal according to their objective. Note that these approaches did not use
a passenger weighted objective function yet.

1.3.2 Our Research Model

We start from a given macroscopic timetable which defines all arrival and
departure times for all trains visiting a station. These times are not changed in
our model. We set up a Mixed Integer Linear Programming (MILP) Model that
platforms and routes as many trains as possible. This is the objective Infrabel
wanted to use. So in this problem, there is no modulation for the number
of people per train and we do not minimise passenger time. All trains are
considered to have the same importance. We indicate which trains cannot be
placed and display placed and unplaced trains graphically so that the planner
can consider what times to change and resolve that manually. If there is
a manually constructed platforming solution already present in the Infrabel
databases, this solution is also checked for possible train conflicts; double use
of platforms and double use of routings. The manual platforming plan can be
used as reference assignment in the optimisation, so that deviation from the
chosen platform tracks, counted in number of tracks deviated, can be used as
penalty and as such be discouraged.

1.3.3 What Our Research Solves

In our platforming model, we generate constraints that avoid that train pairs
use the same infrastructure resource at the same time. We avoid generating
such constraints when we can be sure that they will never overlap in time. This
speeds up model construction. It also speeds up model resolution significantly
compared to other research [2]. Contrary to some other research that allows
train arrival and departure times to vary slightly [46, 17, 3], we, like [5] and [2],
adhere to the fixed arrival and departure times of trains. For us, this has the
advantage that our model and tool can be embedded in Infrabel’s process flow.

Note that in our platforming model we do not require 3 minutes separation
time between trains. Macroscopic timetabling is supposed to avoid some of
the conflicts in stations indirectly in some cases. Firstly, for trains that enter
or leave the station on the same open line track, a separation of trains of 3
minutes is imposed at the macroscopic timetabling level. Of course the 3 minutes
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separation on that level can be enough there but can potentially be too little
inside a station. If this is detected in the microscopic analysis at the signal and
block level, and say a 3.5 minutes separation would be required, the macroscopic
timetable has to be adapted. In case the macroscopic timetabling is constructed
manually, this timetable has to be manually adapted by shifting apart the
trains by an extra half minute. In case our timetabling tool RhinoCeros is used,
this could be done by incrementing the minimal headway time between these
trains to 3.5 minutes and rerun the tool. Note that we did not yet implement
the possibility of specifying different minimum headways per train couple of
subsequent trains. Secondly, some train couples can be on different open lines,
and so not need the 3 minute separation outside the station, but can still
generate a conflict inside the station. Leopard will try to choose a platform and
connecting routes to avoid any conflict. If this is not possible, shifting arrival
and departure times and adapting the macroscopic timetable accordingly still
has to be performed manually. At Infrabel, human timetablers are used to
having control over these times.

1.3.4 Benefits to Infrabel and Passengers

We successfully apply our platforming model [39] and tool, called Leopard, to
train traffic in all Belgian stations [28] and report that a similar amount of
trains can be platformed as in the manual platform plans present in Infrabel
databases. We obtain a higher robustness, even though the robustness against
delays was not explicitly present in the objective for platforming. Per station
the platforming and routing optimisation time takes about 0.25 seconds on
average. Reading databases and writing out graphical files typically takes some
minutes per station. A typical large station takes a human planner about
two weeks to plan. So the platforming process is sped up considerably. In
contrast to the current slower manual platforming method, this gain in speed
allows platforming feasibility checks to be carried out for multiple alternative
timetables of which the best one can then be selected. Leopard can also try to
add additional train traffic compared to what is already present today. In so
doing, it can check the feasibility of future traffic scenarios. When this train
traffic saturates the station, this becomes equivalent to making practical station
capacity estimates. Up to now no tooling was available at Infrabel to make
such station capacity estimates.

Since Leopard produces platforming plans that avoid the use of the same
platform by two trains at any time and avoid the use of dependent routing
resources by two trains at any time, when its plans for actual train traffic are
put into practice, less secondary train delay is expected and passengers will also
benefit from this.
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1.4 Chapter Overview

Chapter 2 compiles my main papers about macroscopic timetabling for entire
countries and gives a non-specialist introduction to each. Chapter 3 does the
same for my platforming and routing papers. Chapter 4 lists all other papers.and
abstracts and extended abstracts that I wrote as first author during my PhD
time. The publications where I was co-author are mentioned in chapter 5.
Finally, chapter 6 gives the main conclusions of this thesis and also mentions
useful further work that could further improve our method and the results.





Chapter 2

Cyclic Timetabling for Entire
Countries

“Failure comes only when we forget our ideals and objectives and principles.”

– Jawaharlal Nehru

To be able to compute a timetable that is ideal for passengers, we split up
our process in two steps. The first is the reflowing phase, where we flow train
passenger over the train network. This is discussed in section 2.1. The second
step is the retiming phase, which computes ideal train arrival and departure
times for the timetable. What we consider ideal is discussed in sections 2.2
and 2.3 and amounts to the ‘objective’ of a timetable. We choose to minimise
statistically expected passenger travel time in practice for all passengers together.
We then apply this two step process to the case of all Belgian passenger trains,
as described in section 2.4 and to the case of all Danish passenger trains as
described in section 2.5. In section 2.6, we add the ’excess journey time’ to
the journey time already in the objective function. The excess journey time
corresponds to the time passengers wait for their train departure at their first
station and wait on the next mode of transport at their station of arrival. This
can be minimised as well by temporally spreading alternative trains between
each couple of origin and destination stations.

15
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2.1 Deriving all Passenger Flows in a Railway
Network from Ticket Sales Data

Full paper presented at International Association of Railway Operations Research
(IAROR), Rome, Italy, 16-18 February 2011

Our final aim is to automatically generate a cyclic train timetable for Belgian
passenger trains that takes all passengers as quickly as possible from their origin
station to their destination station, averaged over all statistically expected
primary delays, say, over a year. The total expected passenger journey time
depends on the chosen departure and arrival times for all trains in all stations.
To be able to exactly calculate this total time, we need to know for each train
ride activity from each station to each next station and for each train dwell
activity inside each station, how many passengers participate in this activity.
This information is not directly available at Infrabel. However, in the following
paper, we describe how this information can be calculated by mimicking how
passengers choose the trains that will take them from their origin to their
destination in reality.

There is a lot of research about how such ’route choice models’ or ’passenger
assignment models’ can best be constructed. Since this is not the core part of
our thesis, we opt for a basic version. This comes down to setting up an event
activity graph representing the train service offering as a network. Passengers
know their origin and destination station and software can just as well find
the quickest route and some almost as quick routes for them. This is what
router software on websites also does, but we need to do it for all passengers
together, efficiently. When all passengers are routed or flown over the network,
per individual activity, ride, dwell and transfer, all passenger streams passing
that activity must be added up to obtain the total number of passengers
participating in that activity. Since there are about 20000 combinations of
origin with destination stations (’OD-pairs’) present in the ticket sales data from
our main operator NMBS, we need to be efficient to perform this routing process.
A modified Dijkstra algorithm with priority queue is chosen. The algorithm was
also parallellised so that all cores within one computer can execute this Dijkstra
algorithm in parallel with other cores. A list of computers on the network can
also be specified and these computations will then also be distributed evenly
and executed over these machines. The subsequent addition of stream sizes
per activity is done serially since it takes relatively little time. Thanks to the
priority queue and high parallellisation over 3 machines with a total of 12 cores,
we now manage to calculate the routings for the whole set of Belgian OD-pairs
in just a few minutes.

Our passenger assignment method potentially assigns passengers that want to

http://www.LogicallyYours.com/RR2011.pdf
http://www.LogicallyYours.com/RR2011.pdf
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go from an origin O to a destination D over more than one train route only. It
first selects the quickest route, then eliminates this route from the graph and
searches the quickest route again. It repeats this procedure until the found
route takes more than x% more time than the very first route found. (x% is
settable parameter. We usually set it to 20%.) At this point it discards the last
route found and spreads passengers over the collection of found routes. More
passengers are assigned to the quicker than to the less quick routes. Note that
the following paper mentions that only one route is calculated, but we later
adapted our software so that it quickly finds multiple routes according to the
algorithm just described.

We can route over the graph representing the current timetable. In that case
we can take into account the assigned ride, dwell and transfer supplements. To
avoid any bias towards the probably suboptimally distributed supplements in
the current timetable, we can also route over a graph that represents only the
ride, dwell and transfer minima. A transfer is then supposed to be of medium
quality and is supposed to take 15 minutes. As such the routing algorithm is
somewhat discouraged from taking routes that use too many transfers. Note
that in either case, we do not take into account train departure or arrival times
or their spreading over the timetable period. This corresponds to assuming
that the alternative routes are reasonably well spread over the timetable period.
More advanced passenger assignment methods may use some more refined values
for the transfer penalty and/or take into account some assumptions about how
many passengers are informed about the timetable and/or about the spreading
of alternative routes in the timetable period even if this spreading is not totally
known in advance. They may also be modal split models that also decide if
some passengers choose to go by car or other alternative mode of transport
instead. Of course, the more factors are considered in these models, the more
realistic the resulting passenger assignment will be.

The local passenger numbers that result from our passenger flow phase will be
used later as constants in the timetable optimisation objective function. This
will be described in detail in sections 2.2, 2.3 and 2.6.

We checked some routes we found with our software with the routes produced
by the online routeplanner (now at http://www.belgianrail.be/nl). Most
routes were clearly the same, but some smaller differences occurred as well. For
some cases we investigated the differences and found that they were caused
by our software extracting the slowest train per train series. [43] constructed
an identical graph type and very similar routing algorithms and could verify
with actual data derived from routes taken in practice and found that their
algorithms predicted the correct routes for more than 95% of the time.

The following paper gives some recommendations to the train operator company

http://www.belgianrail.be/nl
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concerning record keeping of OD data at the station level and performing regular
passenger counting initiatives in practice. It should be added that regarding
the question where to count, [26] present some useful results. More papers can
be found by searching for NSLP (Network Sensor Location Procedure).
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Abstract
In optimizing the national railway timetable for the Belgian infrastructure company Infrabel,
we use the quality criterium of minimizing expected total passenger travel time. Optimiz-
ing the timing of all trains fairly over all passengers requires passenger flow information.
Focus is usually on determining the train service offer side, being the train timing, without
considering the demand side data, being the passenger flow information. In this paper, we
focus on passenger flow derivation.

We start from train ticket sales data and use Dijkstra’s modified shortest path algorithm
on the Belgian passenger train graph to determine a route per passenger origin destination
station pair. We sum route passenger flows over all these routes. We also show how, in op-
timization of a timetable, timing and flows should be treated as interdependent. This means
that we can use a process of iteration over these two phases, which we then call reflowing
and retiming.

The infrastructure company did not have this passenger flow information available for the
current schedule, but they need it to optimize many decisions. We determined these passen-
ger flows for the current timetable.

We also give some recommendations regarding the improvement of passenger flow related
data recording procedures, which would significantly improve passenger service.
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1 Introduction

In the context of setting up a good national railway timetable for the fixedly treated lines of
Belgian passenger trains, the question arises as to what quality criterium or criteria should
be used. For a client driven organization, asking the passengers is the logical answer. In
questionnaires, this - not surprisingly - consistently points to lower total travel times as
number one on their wish list. Travel times can be seen as average times or worst case times,
but the variation in times is also required to be low. Low variation is a property of a robust
schedule. To objectively evaluate any of these criteria, total passenger time is to be summed
over all passengers, each one having the same weight. For this to be possible, we need to
know passenger numbers on any unit piece of their trips. Rather surprisingly, it turns out,
that this data is not available. A chip card system would give this information but is not yet
implemented in Belgium. Yearly, partial counts are performed, but this generates too little
information to be usable. This means that up to now, no such objective quality criterium
was used in optimizing a railway schedule in Belgium. We need these passenger numbers,
so we set up a procedure to derive them from ticket sales and some other data. Later, we
give some recommendations for data collection that could greatly improve results, and are
easy to perform.

In Section 2, we introduce the train network graph, how the reflowing and retime phase
work on this graph, and how iteration over them works and decreases the total expected
passenger time. Section 3 explains the hourly asymmetry inherent to real passenger flows,
the lack thereof in the available data and how data collection can be improved. Section 4
describes how zone to zone based ticket sales numbers can be converted to approximate
station to station based data and again how data collection can even improve its results.
Section 5 describes how, from these station to station passenger numbers, passenger routes
and the resulting flows can be derived. It also shows how this procedure can be used on
an existing as well as a still to be optimized train timetable. We give a practical algorithm,
verify its output data where we can, and show what is new and useful about this data. Section
6 sketches how the problem scope should be extended when the effect of a change in Origin-
Destination-matrix has to be included. Section 7 summarizes the main contributions of this
paper while Section 8 mentions our plans for related further work.

2 The FAPESP Problem

In formalizing the problem and the graph to model it, we are inspired by the formulation
of the timetable problem as a Periodic Event Schedule Problem (PESP) [7, 8, 10, 11, 12,
15, 16]. This is the problem of determining good or optimal values for periodic event times
or equivalently the durations between these event times. Since PESP does not consider
(passenger) flow variables, we need to extend it. We propose to call the extended prob-
lem FAPESP, for Flow Allocation and Periodic Event Scheduling Problem. Comparable
research has been performed by Bouma et. al. [1], Hofker et al. [9] and Exel et. al. [6]
and led to the tools PROLOP and TRANS, developed by QQQ Delft, for passenger flow
derivation on the Dutch train network. The graph we set up is similar to the PESP graph,
but apart from a duration variable for each edge, it also has a flow variable for each edge.
We describe and construct all objects in detail here, which will lead us to the final FAPESP
graph.
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2.1 The FAPESP Graph

Train and Passenger Actions
To be able to let passengers choose their preferred routes present in the train network, we
need to model this network. This network models the train service. All trains intermittently
ride and dwell between and at stations. Also, we have passengers realizing transfers be-
tween trains. This results in three types of actions. The train actions ride and dwell and the
passenger transfer action. Every action has one passenger flow. So these are the values to
be derived.

For the further optimization, it is noted that either the flow numbers on these separate
actions will be used, or otherwise, flows per route will be used, where we need to be able to
follow passenger flows per route, through their whole sequence of ride, dwell and transfer
edges. This could be useful for example, if we need to evaluate the probability that a person
following a certain route will arrive on time [13]. So we keep data-structures for both
separate action flows and origin to destination routes with their associated flows.

Vertices and Edges
The set of actions can be practically represented by a directed graph G(V,E) with vertex
set V and edge set E. Refer to Figure 1 for construction of this graph.

Vertices come in two kinds for trains and two kinds for passengers.

• a train arriving at a station, set Varr ⊂ V

• a train departing from a station, set Vdep ⊂ V

• a set of in passengers going to depart from and now entering a station, set Vi ⊂ V

• a set of out passengers having arrived at and now leaving a station, set Vo ⊂ V

where, Varr ∪ Vdep ∪ Vi ∪ Vo = V and all pairwise sets are distinct.
Edges model the activities for which we want to determine flows and durations. They

are all directed ones and come in two kinds for trains and three kinds for passengers:

• a train riding between its departing time at the previous station and its arrival time at
the next station, set Er

• a train dwelling between its arriving time at the current station and its departing time
from the current station, set Ed

• a train turning around at its end station to go the other direction, set Eta. The set
Eta may be considered a subset of the set Ed but in fact other constraints apply.
For example passengers will not be able to enter a train when it is performing a turn
around action. Also, a minimal service time for a turn around action will usually be
larger than a minimal dwell time for a standard dwell action.

• a set of incoming passengers entering our system graph at a certain departing out-
bound train, set Ei

• a set of passengers transferring between a feeder train arriving in a station and a
different, outbound train departing from that same station, set Etr. Note that the
transferring passenger can start his transfer at the beginning of the dwell action of
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the feeder train and should end transferring before the end of the dwell action of the
departing train. Because an edge represents the maximum allowed time for its action,
we model the transfer edge between these points.

• a set of outgoing passengers leaving our system graph at a certain departing outbound
train, set Eo

where again, Er ∪Ed ∪Eta ∪Ei ∪Etr ∪Eo = E and all pairwise subsets sets are distinct.
Note that the in and out edge types are necessary if we want to distinguish passengers flows
entering (or leaving) different trains at the same station.

2.2 The Two-Phased Approach

Reflow Phase
The task of the reflow phase will be to assign a passenger flow fe to every edge e ∈ E.
Note that the reflow phase does not do any assignment to any vertex variables. The input
data here is the graph structure, including the edge duration de of each edge e, together
with the number of passengers per origin station to destination station pair, called OD-
pair. A shortest route will be chosen for each OD-pair. This is done here with Dijkstra’s
shortest path algorithm. Per edge e, flows from all routes that pass through e, can then be
accumulated to obtain the total flow fe of e.

Retime Phase
Similarly, the task of the retime phase will be to assign a duration de for every edge e ∈ E,
but this time, also satisfying all infrastructure constraints. Currently, we consider the dura-
tion for all in and out edges from Ei and Eo equal to 0. The input data here, is again the
graph structure, this time annotated with the flows fe obtained in the previous phase: the re-
flow phase. These fe are treated as fixed now. The variables are de for which we determine
an ideal value here. There is of course a minimum to each de per action, which we represent
by me. The technique we use to do this is Mixed Integer Linear Programming (MILP).

On the vertex level, the retime phase results in event times tv per vertex v ∈ V that are
separated by the durations of the edges between them. But in fact this is only a derived
property. Also, if we add a constant time to each vertex time tv , the result is still a valid
solution of exactly the same quality. With quality, we mean goal function value, which is
discussed next.

Same Goal Function for Both Phases
The goal of both phases: reflowing and retiming, will be to choose fe and de values respec-
tively so that a single goal function is minimized. In this function the assignments fe and
de are the complete set of variables.

We can write this as
G : E|E| → R : e 7→ g(fe, de), (1)

where the goal function G does a mapping from all edges e, using its fe and de values of
the latest reflow and retime phases respectively to a real goal function value.

So, for the reflow phase, we derive the set fe, supposing that the de set is constant
while for the retime phase, oppositely, we derive the set de while supposing the set fe to be
constant.
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Each phase only has an effect on one of the variable sets. But what is important towards
global optimization, is that they share the same goal. This is taken care of by using the
same goal function for both. We can then even iterate over these two consecutive phases.
Note that an identical goal function, in general, does not guarantee yet that iteration of both
phases will converge to a fixed point solution. Oscillation between different good or not so
good yet solutions could still be possible in steady state.

The retime phase corresponds to the aforementioned PESP problem. Because, for retim-
ing, our goal function has fixed fe values, it depends only on de. Integer linear programming
techniques are often used to solve PESP. This can be done if (1) is linear in de. As a more
specific example of a linear goal function (in this case to be minimized) we propose to use
the total expected passenger time

g(fe, de) =
∑

e∈E
fede. (2)

Other functions that use the assignments fe and de can be used though, without breaking
the workings of the iterative system.

Using a stochastic formulation of the total expected passenger time, we can even include
a balance between a speedy service and robustness and still remain linear. Constraints are
linear too. This will be the topic of a future paper on retiming. Concerning this approach to
robustness, we refer to the papers of Vansteenwegen et al. [17, 18] and Dewilde et al. [4].

2.3 Self Sufficient Iterations

We already mentioned that the reflow and retime phases can be executed iteratively in a se-
quential loop. Figure 2 shows this idea graphically. The rectangular boxes represent opera-
tions, while the rounded boxes show data in- and outputs or decision points. zodzo,zd stands
for the zone origin destination matrix which specifies for every origin zone to destination
zone how many passengers we have. The Mapper in Section 4 will do a mapping from this
to a station to station OD-matrix, called sodso,sd . FA stands for Flow Allocation, or the
reflow phase, which results in initial values for fe in the first iteration or more appropriate
values for fe adapted to the changed de values, in all subsequent iterations. In all iterations,
the retime phase PESP, will produce better values for the edge durations de, adapted to these
changed fe flow values. Cordone and Radaelli [2] as well as Schmidt and Schöbel [14] also
came to an approach of iterations of similar two steps. We call this FAPESP iteration a
self sufficient one, because the reflow phase, by being able to model peoples behavior in
selecting the shortest route, does not depend on external data.

What remains to be done now is to describe in detail what we mean by the data and
operations in the rounded and rectangular boxes. This is the focus of the remainder of this
paper. We start with the meaning of zodzo,zd in theory versus practice.

3 Morning versus Evening Traffic Separation, Hourly Asymmetry and
Hourly Sum

3.1 Hourly Asymmetry

In fact the data for zozo,zd we had available is entirely and exactly symmetric in their OD-
pairs.
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Figure 2: FAPESP Two Phase Flow Chart
offer and demand iteratively adapting to each other

This means that the number of passengers between zones A and B is always equal to
the number of passengers between B and A. This was at first surprising, but is explained
by the fact that it are sale figures of seasonal tickets, always valid in two directions between
two zones.

However, this is unfortunate, since here information gets lost about the direction of
travel. For instance, no procedure could possibly be able to separate out the passenger flows
in the morning from the ones in the evening.

One could argue that this information is not needed, since timetables should be sym-
metric anyway. One of the reasons given is that people who travel one way in the morning
usually come back in the evening. This is true, but not the correct reason. Symmetry is a
property of a timetable, even within one period, usually one hour [11].

To know
∀e ∈ E : de = ds(e), (3)

where s(e) is the symmetric edge of e. The symmetric edge for a train riding from
station A to subsequent B is the edge for the opposite train going from station B to A. This
implies that every train has another train in the opposite direction. But e can be any train or
passenger edge type, ride dwell, transfer, in, out. What is important here is that both edges
e and s(e) make part of the same hourly instance of a the full days schedule.

However, within one hour, commuting flows are certainly not symmetric. Typically
morning flows bring people from smaller places to bigger cities and oppositely the evening
flow brings people from big cities to these smaller places again. So separately treated,
morning passenger flows within each morning hour is not symmetric nor is the evening
passenger flow. This means that, morning and evening separately treated again, we would
need fewer trains per hour in one direction than in the other.

The main reason that still, per hour symmetric schedules are common, are rolling stock
constraints.[8, 11] Indeed, if the frequency of trains from A to B is higher than backwards
from B to A, material availability will increase in B and decrease in A. In fact this would
be good to support the backwards flow in the evening, but this requires storage capacity and
also leaves material sitting idle, which all have a cost too. These costs should in fact be
weighted against the extra cost of requiring a symmetric schedule. For a clear description
of benefits and costs of symmetry, we refer to Liebchen [11].

For now, missing data, working for short term and also considering that material han-
dling cannot be immediately totally redesigned from scratch, we will keep using the sym-
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metric simplification of the OD-matrix. But we will remember that using symmetric flow
data misses a chance on a passenger service improvement of which the importance is yet
unknown.

3.2 Separation Recommendation

As conclusion of the previous paragraph we can recommend an improvement to the data
collection procedures for the train operator company.

At the source, let the train passengers specify their morning source and morning des-
tination at ticket purchase time and keep accurate record of this. This would show the
asymmetric nature of passenger flow data, which is important to keep, to be able to later,
correctly balance passenger service benefits with material handling costs.

4 The Mapper: Mapping Zone Pair to Station Pair Numbers

We mentioned in 2.3 and showed in Figure 2, that we start from seasonal subscription ticket
sales data to derive local flows on edges. Note that, this information represents the current
customer OD-matrix and not the desired one, independent of the current train service offer.
This corresponds in choice modelling with preferred versus stated preference. Also, we will
see that this information is not yet in a directly usable format to start calculating routes for
them in our graph, and how we can convert it first. This is the task of the mapper.

4.1 Zones instead of Stations

Tickets, in Belgium, are issued and sold, from one origin zone to a destination zone. A zone
is a collection of geographically clustered stations. This means that from the ticket sales
data, only the origin zone and destination zone are known, and not the specific respective
stations. This is unfortunate. We will have no other choice than to somehow proportionally
map zone to zone pairs to station to station pairs.

4.2 Zone to Station Matrix Conversion

From an Infrabel study, we had available the absolute numbers poMs of departing passengers
per origin station per Morning, based on actual physical countings. In these countings, pas-
sengers at the origin station were not asked what destination they were going to. So these
countings only give a single number per origin which is the total for all the destinations
corresponding with this origin.

To obtain the (departing) importance of a station in a zone, we derived all ratios of each
stations’ poMs over the sum of all poMs over the stations in their zone. Formally, if zodM
is the origin destination matrix expressed in zones for the Morning, and Sz the set of stations
in the zone z, then the ratios roMs standing for ratios of origin in the Morning are defined
and calculated as

∀(zo, zd) ∈ dom(zodM) : ∀s ∈ Szo : roMs ≡
poMs∑

s′∈Szo
poMs′

, (4)

where dom(zod) represents the domain of the zone origin destination matrix zod, which
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represents all the origin-destination zone pairs. (The range, ran(zod) would be their respec-
tive passenger numbers.)

Similarly, for the arriving importance of a station in its zone, on the destination side we
have

∀(zo, zd) ∈ dom(zodM) : ∀s ∈ Szd : rdMs ≡
pdMs∑

s′∈Szd
pdMs′

, (5)

where pdMs are the numbers of passengers arriving per destination station in the Morning,
and rdMs their correspondingly derived ratios. In fact the pdMs were not counted and are
not available, but are necessary for the explanation that follows. We will show later how we
solve this problem.

With poMs and pdMs values, we could derive the station to station Morning OD-matrix
sodM from the zone to zone Morning OD-matrix zodM as

∀(zo, zd) ∈ zodM : ∀(so, sd) ∈ (Szo × Szd) : sodMso,sd ≈ roMso × zodzo,zd × rdMsd .
(6)

As an example, suppose we have 100 passengers, going from one origin zone to a desti-
nation zone. We suppose now that the departing respectively arriving passengers are counted
on origin and destination zone stations and give the poMso and pdMsd numbers given in
Table 1. This table also shows the sodso,sd numbers derived by (6).

Table 1: Derived Origin Stations to Destinations Station Matrix Example
pdMsd 10 20 40 30
rdMsd 0.1 0.2 0.4 0.3

poMso roMso sodMso,sd
40 0.4 4 8 16 12
10 0.1 1 2 4 3
50 0.5 5 10 20 15

In fact, the situation is more complex. In practice, the roMso ratios can be different
across origin stations, resulting in different ratios per destination station for each origin
station. This exactly represents the unrecoverable data loss resulting from being supplied
a zone to zone matrix instead of a station to station matrix. Hence also the approximation
sign in (6).

4.3 Lack of Destination Countings

As we mentioned in 4.2, only departing passengers were counted, and not the arriving ones,
the pdMsd values. So we had to approximate rdMsd by roMsd which further approximates
(6) to

∀(zo, zd) ∈ zodM : ∀(so, sd) ∈ (Szo × Szd) : sodMso,sd ≈ roMso × zodzo,zd × roMsd .
(7)

In conclusion, using (7), our double approximative Mapper procedure derives a station
to station OD-matrix from the zone to zone one. Certainly passenger flows between stations
that are important within their respective zones will still be assigned an important part of
the traffic between these respective zones.
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4.4 Results

In Belgium, we define 497 zones, but only 21 contain more than one station. The number
of stations per zone varies from 1 to 7, with the exception of Brussels zone, which contains
31 stations. The zone OD-matrix zod has 19087 zone to zone OD-pairs. Our Mapper,
programmed in C++, expands these to 61725 station OD-pairs. We say that the matrix is
more diffused now. This process takes only 0.97 seconds on a 2.88 GHz dual core Apple
machine. Other processes in FAPESP will be much slower than this, so it is not necessary
to further speed this up.

4.5 Station Resolution versus Station Countings Recommendations

We have shown that due to the absence of accurate station to station flow data, even a
procedure trying to reconstruct it with other data available, can only be an approximation of
the original. So, as conclusion of Section 4 we can recommend a more ideal, yet low cost
improvement to the data collection procedures for the train operator company.

At ticket purchase time, let the train passengers specify his or her morning source station
and morning destination station instead of just recording zones, and keep accurate record of
this. This would represent more correctly, the resolution of passenger flow data, which is
important to avoid any station within zone uncertainty for the optimization stage. This then,
would make the Mapper totally redundant, which is a good thing.

If the OD-matrix is only available on the zone level, we need to rely on countings to
obtain the OD-matrix on the station level to do the mapper transformation. The countings
should be performed well, which means that:

• Departing passengers should be counted at origin station and arriving passengers at
destination station. As demonstrated these countings poMso and pdMsd are both
necessary.

• Better still, would be to also ask the departing passenger what is his destination sta-
tion, as such obtaining sodMso,sd directly. This requires talking to instead of just
counting passengers which is more involved. Note that to be entirely accurate even
transfer passengers should be excluded in these countings, which makes countings
even more complex.

• This is another reason why directly defining tickets and subscriptions in terms of sta-
tions instead of zones is largely preferable to these compensating counting methods.

5 The Router: Routing Station OD-Pairs to Determine Flows

The Router, or FA module, has two main tasks. It needs to derive a graph from existing
trains and add transfers. Then it needs to perform the actual routing over it, for all station
OD-pairs, meanwhile accumulating their flows over the route edges.

To realize this, we have to find the routes that each passenger going from origin station
so to destination station sd will choose. Passengers will usually choose the shortest or
almost shortest route in time. Some bad experience along a slightly shorter route with
varying time, for example due to a transfer often missed, may drive the passenger towards
a slightly longer but more duration stable route. For simplicity, we currently supposed that
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we can select the shortest route. Before doing the actual routing, we start with constructing
the graph that routes will be chosen from.

5.1 Graph Derivation

The graph is the FAPESP graph whose elements are defined in Section 2.1. There are two
actors in our graph, trains and passengers. We start with trains.

Dwell And Ride Edges From Existing Train Lines
To produce results relevant to todays operations we started from the existing passenger train
set. We focus on the morning peak. We want to end up with a train set that can be copied
from hour to hour and as such must be representative for every morning peak hour. We
first had to make a decision on what trains to select for inclusion in the graph. We chose the
trains that run during the hours 6 to 10 as the ones to start from. Then, per couple of opposite
trains occurring every hour, we took one representative direction and hour. We noticed that
symmetry is not perfectly maintained within each train couple, but we consistently chose
the first train in the couple as representative. There are also deviations from periodicity,
which meant that for a series of hourly repetitions, we had to choose a certain representative
hour. We took the criterium of selecting the hour of the train that used the most capacity.
This means it is riding for the longest time. The rationale here is that, if we are able to
plan this train, we will also be able to plan a train that uses less capacity. Among the quasi-
symmetrically reversed trains, the same capacity-based selection process is used.

This way, we obtained 205 trains over different categories as they exist in Belgium.
These trains stop and pass through 1114 points of which 550 are stations and 564 are other
reference points. The combinations of these trains with these points gives 11771 vertices
and service edges in our graph. Graph edge numbers are given in Table 2. The train cate-
gories are given in order of having few to many stops per distance travelled. Note that the P
trains, which are peak trains, do not have an opposite train during the same hour, indicating
the apparent benefit of asymmetry during peak hours.

Table 2: Belgian Passenger Train Graph Main Figures
Train Type Lines Service Edges Potential Transfer Edges to TotalRide Dwell IC IR L CR P

IC 50 2294 2244 2897 2205 1338 989 38 7467
IR 41 1390 1349 2159 1431 1181 682 36 5489
L 92 1723 1631 1319 1184 1542 238 47 4330

CR 20 528 508 989 701 237 850 54 2831
P 2 53 51 35 34 45 50 0 164

Total 205 5988 5783 7399 5555 4343 2809 175 20281

Many Potential Transfer Edges
Apart from ride and dwell edges, Table 2 also shows a lot of potential transfer edges, 20281
in total. We explain here what they mean and why there are so many.

The railway companies have defined where they want to guarantee a transfer. They
also have minimal times for these, which they consider in planning. There are however, a
lot of other, non-planned, potential transfers, whose duration corresponds to the difference
between planned arrival and departure times of a pair of trains in the same station. If this
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time difference is practical, say around 2 to 20 minutes, they will be exploited by some
passengers. We should not ignore these other transfers.

When we are in the process of scheduling, we do not know the relative order of trains
yet. We only know minimal durations of ride and dwell actions me per edge e. Suppose
a train A arrives at time tarr,A,S in station S and a train B departs at time tdep,B,S in the
same station. We model a vertex varr,A,S for the arrival of train A in S and vdep,B,S for
the departure of B in S. We want to model a transfer edge etr from varr,A,S to vdep,B,S .
Suppose as well that a walking time between the platforms of train A and B takes time metr

The condition that the transfer can be realized on time, is that

tarr,A,S +metr ≤ tB,dep,S . (8)

The minimum time metr is a known constant but tarr,A,S and tdep,B,S are still unknown.
So how can we avoid mapping passengers on a transfer that may go back in time? The
answer is that the transfer is always possible, since due to periodicity, from A, there is
always a next-hour-B to transfer to, however, sometimes with a high transfer time.

This means that we can and should define potential transfers between all train pairs
stopping at a common station, even in both transfer directions. Refer to Figure 1 for the 8
transfers edges generated by the crossing of two train pairs in a station. We have modeled
169 morning trains of which quite some pairs can run along and stop at the same stations,
and the number of transfer edges is quadratic in the number of trains per common stopping
station. So it is not surprising that 10879 potential transfers can result. Table 2 shows these
10879 potential transfers, divided up between each pair of train categories. Their importance
shows the potential interactivity between different categories.

Some reduction in this high potential transfer number could be made here. In order of
increasing crudeness, we could disallow transfers

• from a train to other trains that simply go back to where a passenger just came from,

• between trains with the same direction on a common line in every common station.
(Selecting a first or last transfer over their common trajects is sensible.)

• in very small stations which are supposedly only end stations or departing stations for
people.

For now we try to reduce development time, and still leave all transfer edges in the
graph. We prefer to spend our efforts on tuning the retiming MILP model, such that the
solver can cope with the full graph in a reasonable time and full optimality can be reached.

5.2 Flow Derivation on a Timed versus Untimed Schedule

To derive how flows are distributed over a graph, we need to distinguish three cases. First,
we can use this procedure for an already planned schedule, that has already a duration
for each of its edges. We call this a timed schedule. Second, in the case of optimization
from scratch, no edge durations are known for the initial schedule. We call this an untimed
schedule. Third, in all next iterations retiming has at least been performed once, so these
are called retimed schedules. We examine the differences in treatment here.
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Flow Derivation on a (Re)Timed Schedule
In both a timed and a retimed schedule, we make use of the planned edge durations de. This
is in general the minimal time required for the action e, called me, plus a certain supplement,
called se, which is defined in the planning or retime phase respectively. Indeed the task of
the planning as well as retime phase, can be said to be defining, for every e a supplement
se ≥ 0, on top of the minimal action times me. The result is

∀e ∈ (E \ Etr) : de = me + se ≥ me. (9)

So in both contexts, we can use already chosen de values. We excluded the transfer
edges from 9 because they require special treatment. Their durations can be derived from
the other edges as

∀e ∈ Etr : de = (te+ − te− + T ) mod T, (10)

where e+ is the end vertex of the edge e and e− its beginning vertex and T is the period
of our graph. Since we suppose periodicity T , say one hour, of all trains in our graph, also
the transfer between every train pair can occur every hour. Consequently, these two trains
can also never be more than one hour apart, so ∀e ∈ Ttr : de < T . Note that we could add
a penalty to (10), being the time for the inconvenience of having to take a transfer instead
of spending an equal total time on a slower train without a transfer. A subjective time value
is possible here. This has been described by Vansteenwegen and Dewilde et al. [4, 17, 18].

Flow Derivation on an Untimed Schedule
We mentioned before that we can also use this procedure on a schedule, which is still being
optimized. This means that in the FAPESP context, it has not passed any retime phase yet.
We should take care that, in this case, no prejudice is present in our graphs edge durations.
We believe, this means we can choose the values de = me, since this is equivalent with
supplements se = 0, so

∀e ∈ (E \ Etr) : de = me. (11)

This, at least a priori, gives no preference for any edge to get extra slack over other
edges.

We again excluded transfer edges from (11). We could, here as well, use (10) to derive
transfer edges durations. However, since current edge durations from (11) are not really to
be trusted yet, we do not want to derive them from this still uncertain information.

We want to select initial times for the transfers that are not given preference to any of
them, so they all need to get the same initial value, say Ctr.

∀e ∈ Etr : de = Ctr < T. (12)

On the other hand, since we need to model peoples choices in choosing train routes, we
want to avoid choosing too many transfers. Hence we choose a value for Ctr that is equal
to the alternative cost in time of being on riding or dwell edges. We took

Ctr = 15min (13)

as an estimate for this penalty. So 15 minutes is considered a balance between a transfer
short enough to be considered interesting and taken by passengers and long enough to not
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result in people changing forth and back at every station between parallel trains in wanting
to skip dwell times longer than this transfer time.

It may seem strange that (12) breaks the usual edge constraints in (10) which seem
to have universal validity in any graph where vertices represent absolute times and edges
durations between them. In fact, it should, but consider that this is only a postcondition
of the retime phase and not a precondition of the reflow phase. Dijkstra and other routing
algorithms are certainly able to cope with a schedule satisfying (12) instead of (10), since
they only use edge duration variables and no vertex variables.

In conclusion, in the FAPESP iterative context, (11) and (12) are the ones to use for
bootstrapping the procedure in the initial iteration. All next iterations will be able to use (9)
and (10).

5.3 Router Algorithms

The main part of our reflow phase is the router algorithm. There are many algorithms
described in literature. We start with a classic shortest path algorithm.

Dijkstra Shortest Path Algorithm
The single pair Dijkstra shortest path algorithm [3, 5] finds a sequence of edges, called
a route, in a directed graph between two specified vertices vo and vd, that has minimal
length. The route length is defined as the sum of the length of all edges belonging to this
route. In our case, we use as edge length for edge e, the time de, so this results in a route
with minimum duration. The Dijkstra algorithm only works for non-negative edge lengths.
Since our durations are non-negative, this is fine. It uses a greedy breadth first search and a
process of relaxation that allows it to make shortcuts. The total running time of this standard
algorithm is O(|V |2 + |E|) which is O(|V |2) [3]. Our average Dijkstra execution time was
1.28 seconds per pair, on a 2.88 GHz dual core Apple machine, which still seems quite high.

Modified Dijkstra Shortest Path Algorithm
Since for our graph |V | = 11771 and |E| = 11771 + 20281 = 32052, it is sparse. For
sparse graphs, it is recommended [3] to implement a priority queue, with a binary heap,
which then results in the modified Dijkstra algorithm. The total running time then becomes
O(|V | + |E|lg|V |) which is O(|E|lg|V |) [3]. This predicts an asymptotic time saving
factor for going to the modified version, of O(|V |2/|E|lg|V |) = 40107. Running the
serial Dijkstra shortest path algorithm sequentially over the 61725 station to station pairs,
on the same machine, now takes 23 minutes 45 seconds, so 1425s. This is an average of
1425s/61725 = 23ms per OD-pair. So the binary heap implementation of the priority
queue gained us a factor 1.28s/23ms = 55.6 which is quite a bit lower than the predicted
magnitude for the asymptotic case but still satisfying.

Further Possible Improvements
Implementing the priority queue as a Fibonacci heap instead of a binary heap could still
lower execution time to O(|V |lg|V |+ |E|) [3].

On multicore systems a parallel version which can execute multiple route findings in
separate threads simultaneously could also be implemented.

More essentially, instead of considering all the O(|V |2) OD-pairs separately, we could
cache results of sub-routes already calculated in executions of previous OD-pairs and reuse
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them. This idea occurs also in the approach in the all pairs Dijkstra Algorithm [3]. John-
son’s algorithm has the best asymptotic performance from the ones mentioned by Cormen et
al. [3]. Instead of executing singe pair algorithm |V |2 times sequentially which would give
a performance of O(|V |3+|V |2|E|lg|V |), Johnsons algorithm gives O(|V |2lg|V |+|V ||E|)
when using the Fibonacci heap. This looks promising, but since we expect retiming to take
much more execution time than the current 23 minutes for reflowing, we, for now, prefer to
spend our efforts there rather than here.

We have now described the reflow phase. We now want to execute the reflow phase on
the current schedule to know current flows. Then we want to see if we can do better by
running the reflow phase on the untimed schedule.

5.4 Reflowing the Current Timed Belgian Schedule

The current schedule is a timed one as defined in 5.2.

Output Data Consistency Check
The first post condition we check is that flows add up in every vertex. We have the flow law

∀v ∈ V \ (Vi ∪ Vo) :
∑

e∈v+
fe −

∑

e∈v−
fe = 0, (14)

where v+ is the set of in edges of vertex v and v− its set of out edges. This check passes,
which means that flows for each route have been properly accumulated over their edges.

Output Data versus Expectation Checks
We listed all edges sorted by decreasing flows and see if we get results that we recognize
in reality. The 10 edges with the highest calculated flows in the country are all around
Brussels, which is known as the bottleneck in Belgium. Indeed, a lot of people commute by
train to Brussels every day. Edge flows on them vary around 10000 people per day. These
are all ride and dwell edges, some consecutive.

The transfer edge with the highest flow is number 866 in the list with 3029 transfer
passengers per day, also in Brussels, between a fast IC train and a more local CR train. This
means people come from far and have to take a second local train in Brussels to get to their
jobs.

We can also look at stations. A first check is to compare the in and out numbers with
the ones we derived in the mapper. This is a close match. Where we see differences, they
can partly be attributed to the approximations described in the Mapper Section but also to
the fact that the absolute numbers we have are averages over the years 2003 to 2007 while
our OD matrix dates back from 2002. We see a growth over the years of in and out flows,
which varies a bit over different cities.

We checked the transfer flow numbers, per station. From an Infrabel expert, we know
what are stations with many transfers in reality. For the current schedule, to see if we obtain
the same list, we sum all transfer flows per station and order the stations by total transfer
flow in Figure 3. The stations in the list are confirmed to be the transfer stations.

For validation of our results for separate flows per train or train pair, we tried to obtain
data about passenger counts per ride or transfer edge, but could not get this data.

Further removed from our input data, and largely dependent on the Dijkstra algorithm
are the dwell edges. Dwell edges are never counted, because it is not practical because of
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Table 3: Biggest Stations: Current, Robust Schedule Flows and Average Edge Durations
Station Name In= Ride Dwell Transfer

Out F D F D F D
p/day p/day min p/day min p/day min

BRUSSEL-NOORD 20202 304820 1.6 158844 0.8 18001 6.9
BRUSSEL-ZUID 24403 321084 1.6 174662 0.8 13715 5.4
GENT-SINT-PIETERS 18201 73259 2.7 10252 2.2 8211 8.2
OTTIGNIES 2929 52873 1.8 17343 0.9 7766 8.1
MECHELEN 8294 95020 2.0 52031 0.4 6949 6.4
DENDERLEEUW 2900 68479 2.5 23959 1.8 7381 6.7
BRUSSEL-CENTRAAL 36983 203596 1.3 59419 1.0 5419 6.3
LEUVEN 10879 80074 2.5 31865 1.2 4313 7.4
LIEGE 6554 31750 2.6 12478 0.6 3521 7.4
NAMUR 9083 43395 2.9 15861 0.6 2950 10.4
ANTWERPEN-BERCHEM 6351 52855 0.8 17751 0.8 2327 6.7
BRUGGE 8590 84921 2.0 38947 0.2 1722 10.2
CHARLEROI 5149 17968 2.3 2601 1.4 1683 10.4
ANTWERPEN-CENTRAAL 8186 24523 1.8 2430 1.0 1647 6.1
KORTRIJK 4500 25185 1.6 7020 0.2 1078 17.0
MONS 4646 18828 3.6 4050 1.4 718 14.0

moving people, so this data is entirely new. For Brussels Central we come to 58257 daily
dwell passengers, dwelling 1 minute on average.

We consider our output data starting from the current schedule, validated enough to have
confidence in our reflow procedure. We now want to improve on this schedule, by starting
from a clean slate, meaning on the untimed, unbiased schedule as defined in 5.2.

5.5 Reflowing the Untimed Belgian Schedule

We also ran our Router on the untimed Belgian schedule with the same trains, but with edge
durations de = me and transfers equal to 15 minutes. This gives the result in Table 4. Of
course as for the current schedule reflowing in 5.4 we checked and passed the flow law.
However, since the untimed schedule is an abstract one, contrary to the current schedule
reflow results from 5.4, we cannot compare with any data from reality.

We see that the untimed schedule numbers in Table 4 are different from timed schedule
numbers in Table 3. Comparing both is treacherous though. We have to realize that the
untimed schedule does not meet the requirements (9) and (10) for a final, timed schedule
yet. The requirement (11) it does meet, results in lower edge durations and averaged per
station durations D than when it has to meet (9) with se > 0 for some edges e.

The requirement (12) with Ctr = 15min it meets, allows it to optimize flows more
transfer time unbiased and hopefully better than when it has to meet (10) directly. Indeed
for the timed schedule a couple of opposite transfers will sum to the period T , one hour
here. For the untimed one, each transfer takes 15 minutes, so the sum of each opposite
transfer couple is only 30 minutes. To be able to compare the two tables, we need to pass
the untimed schedule through the retime phase first, so that it will meet (9) and (10). Apart
from this retiming, we need to realize that the current schedule is planned to be robust too,
while our untimed schedule, even if passed through retiming, will still be tight [8], meaning
that it has only the minimal amount of supplements se ≥ 0 to make the schedule feasible.
So, in general, more than these supplements will have to be included to make it also robust,
which is amongst others, needed for reliable connections [8]. This can be done by including
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Table 4: Biggest Stations: Untimed, Tight Schedule Flows and Average Edge Durations
Station Name In= Ride Dwell Transfer

Out F D F D F D
p/day p/day min p/day min p/day min

BRUSSEL-NOORD 20202 287067 1.6 153069 0.8 11253 15.0
BRUSSEL-ZUID 24403 312473 1.6 169762 0.8 12660 15.0
GENT-SINT-PIETERS 18201 71557 2.7 10480 2.1 7133 15.0
OTTIGNIES 2929 52399 1.8 19399 0.9 5450 15.0
MECHELEN 8294 96507 2.0 54846 0.4 5364 15.0
DENDERLEEUW 2900 64645 2.5 21538 1.4 7885 15.0
BRUSSEL-CENTRAAL 36983 198001 1.3 61262 1.0 779 15.0
LEUVEN 10879 78962 2.5 32845 1.4 2659 15.0
LIEGE 6554 30965 2.6 12370 0.6 2951 15.0
NAMUR 9083 43755 2.9 15663 0.5 3323 15.0
ANTWERPEN-BERCHEM 6351 50715 0.8 16269 0.8 2739 15.0
BRUGGE 8590 82429 2.0 36973 0.2 1511 15.0
CHARLEROI 5149 17541 2.3 1619 1.1 2445 15.0
ANTWERPEN-CENTRAAL 8186 22454 1.8 2573 1.0 470 15.0
KORTRIJK 4500 25976 1.6 7180 0.2 1313 15.0
MONS 4646 18481 3.6 3838 1.5 757 15.0

robustness elements in the goal function [4, 17, 18]. So, under the conditions that retiming is
performed and robustness measures are taken, direct comparison with the current schedule
will be fair.

5.6 Route Registration versus Edge Countings Recommendation

In Section 5, we tried to reconstruct the intentional route of all train passengers. This is
something we have to do, because we lack this initial information.

• But, we recommend that, at ticket purchase time the train operator company asks the
traveller to supply them with the route he would normally choose himself, including
specific trains and possible transfers between them. To ease this question, some routes
could be suggested and the traveller could get these as a multiple choice list, including
an other route choice which he then mentions himself. These recorded routes could be
used in our system as initial routes, determining initial flows. This is the best possible
initial route information we could get. This does not make the reflow phase redundant.
Reflow will still be necessary for the generation of routes at ticket purchase time, and
for the mentioned reflow iterations.

• As mentioned in 5.4, we would have liked to be able to check our output data with
passenger numbers counted in real life, but could not obtain this data. So we can
recommend to the railway companies, that, in addition to the low cost and essen-
tial questions to be asked at ticket purchase time, counting passenger flows in trains
helps to complete or update the changing passenger flow picture. Since at dwell time,
passengers are moving through a train a lot, it is easier to count passengers during
riding and even counting transfer passengers between two trains. By making the dif-
ferences, using the flow law (14) at arrival or/and departure time, the number of dwell
passengers can then be derived.
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6 FAPESP Extension: CODFAPESP

Dependent Iterations
In flow allocation in FAPESP, we model the expected reaction of passengers potentially
changing train routes between their constant origin destination pairs, when the timing of
their schedule is changed by the railway company.

What we have not modeled yet, is that, when the railway company changed the timing
of the schedule, people can also have the following reactions

• People who are not currently using the train, but other means of transport like their
car or a bus, are suddenly attracted by a new shorter and robust train route from home
to their daily job location and back. They could decide to buy a subscription and
become new members of the zone to zone origin destination matrix.

• Other people may be on a route that due to low fe values is less important to the rail
company. As a consequence, service on this route may go down, reflected in higher
de values along this route. Some of these people may give up using the train and
switch to other means of transport.

We call these people-reactions reflected in a Change of the OD-matrix the COD phase or
reOD phase. Obviously, decisions about buying or giving up a railway subscription happen
over a longer time, probably months or even years, than the usually, daily decisions about
which route to take to and from work. We have little hope that modeling the reOD phase
can be usefully accurate. Indeed it is much harder to model since more factors play a role
in this human decision than purely calculating the shortest duration path to work. Luckily,
there is also little need of modeling this process, precisely because changes in odzo,zd values
happen much slower than changes in fe values. We take the simple wait-and-see approach,
where we let the passengers decide for themselves and seasonly, use the result of adapted
ticket sales in our model.

This rationale leads to an adapted process with an extra longer term loop for people-
decided OD-matrix adaptations. We call this problem the CODFAPESP, for Flow Allocation
and Periodic Event Scheduling under Changing OD matrix Problem. The process flow chart
to tackle this problem is given in Figure 3.

Note that the CODFAPESP process has two nested loops with different execution fre-
quencies as well as contexts. The outer loop describes that every season, we will need to
propagate the changes in ticket sales in our model. The inner loop needs to be executed at
planning time, until converged to a satisfying solution. Only then can the new planning be
put in place in reality. We do not want passengers and the railway companies having to per-
form this inner loop in reality, implying too slowly or even never converging three-month
iterations, which is what happens now.

7 Conclusions

This paper presents three major contributions. Firstly, it builds up the theoretical extension
of the PESP retime phase with the passenger reflow phase to the FAPESP. Secondly a prac-
tical implementation of the FAPESP is demonstrated, which is not so straightforward as the
theory suggests. Thirdly, we give some recommendations to the railway companies about
data they can and should gather when they want to focus more on passenger service and
optimize the timetable from a passengers point of view.
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Figure 3: CODFAPESP Two Leveled, Two Phase Flow Chart

Showing effect of long term change in demand

In order to optimize the timetable later, the procedure described in this paper allows
to determine passenger flows for a railway network. The passenger flows, together with
the action durations, are the variable components in our minimized goal function of total
passenger travel time. This initiates a practical process for railway timetable optimization.

Quite apart from the goal of timetable optimization purposes, the reflow phase can also
be used separately to derive passengers flows for a complete schedule. This has been done
for the Belgian network for the schedule in operation and resulted in accurate passenger
flow numbers. This information has never been available before and can now be used by the
Belgian railway infrastructure company, Infrabel, to weigh choices and take decisions with.

8 Further Work

We identified some further work. We need to further verify the result of flow allocation
phase with future, partial passenger counting data as it becomes available from the railway
company. We can still use more refined routing algorithms that account for passengers
choice spread amongst all the best routes instead of only an arbitrary best route now. We
can also use more balanced routing algorithms that account for passengers choice spread
amongst good routes instead of only the best route or best routes. We want to complete the
retime phase so that the reflow and retime phase can be iterated over and convergence can
be checked. We also would like to perform FA and PESP in a single phase [14], for its own
right and to be able to compare its speed and results to our two phase iterative method.
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[14] Schmidt, M., Schöbel, A., “The Complexity of Integrating Routing Decisions in Public
Transportation Models”, 10th Workshop on Algorithmic Approaches for Transporta-
tion Modeling Optimization and Systems, ATMOS’10, pp. 156-169, 2010.

[15] Schrijver, A., Steenbeek, A., “Spoorwegdienstregelingontwikkeling (Timetable Con-
struction)” Technical Report, CWI, Amsterdam, (in Dutch), 1993.

[16] Serafini, P., Ukovich, W., “A Mathematical Model for Periodic Scheduling Problems”,
SIAM Journal on Discrete Mathematics, Vol. 2, pp. 550-581, 1989.

[17] Vansteenwegen, P., Van Oudheusden, D., “Developing railway timetables which guar-
antee a better service”, European Journal of Operational Research (EJOR)”, Vol. 173,
pp. 337-350, 2006.

[18] Vansteenwegen, P., Van Oudheusden, D., “Decreasing the passenger waiting time for
an intercity rail network”, Transportation Research Part B: Methodological, Vol. 41,
pp. 478-492, 2007.

38 CYCLIC TIMETABLING FOR ENTIRE COUNTRIES

https://lirias.kuleuven.be/handle/123456789/294500
https://lirias.kuleuven.be/handle/123456789/294500
http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf
http://www.cvs-congres.nl/cvspdfdocs/CVS2001deel2C.pdf
http://www.cvs-congres.nl/cvspdfdocs/CVS2001deel2C.pdf
http://repository.tudelft.nl/view/ir/uuid%3Afed440c7-c399-4951-926a-6e81193fd86d/
http://repository.tudelft.nl/view/ir/uuid%3Afed440c7-c399-4951-926a-6e81193fd86d/
http://repository.tudelft.nl/view/ir/uuid%3Ae1728262-c398-499b-b6aa-e5147f28954b/
http://repository.tudelft.nl/view/ir/uuid%3Ae1728262-c398-499b-b6aa-e5147f28954b/
http://www.cvs-congres.nl/cvspdfdocs/CVS2000deel2C.pdf
http://www.cvs-congres.nl/cvspdfdocs/CVS2000deel2C.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-74247-0_2#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-74247-0_2#page-1
http://www.sciencedirect.com/science/article/pii/S1571066104000064
http://www.sciencedirect.com/science/article/pii/0166218X9500073Z
http://www.vewip.at/Dokument/447/Trendanalyse-von-Verspaetungsentwicklungen-im-Personenfernverkehr.aspx
http://www.vewip.at/Dokument/447/Trendanalyse-von-Verspaetungsentwicklungen-im-Personenfernverkehr.aspx
http://onlinelibrary.wiley.com/doi/10.1002/net.21600/abstract
http://onlinelibrary.wiley.com/doi/10.1002/net.21600/abstract
http://homepages.cwi.nl/~lex/files/rapp1a.ps
http://homepages.cwi.nl/~lex/files/rapp1a.ps
http://epubs.siam.org/doi/abs/10.1137/0402049
http://www.sciencedirect.com/science/article/pii/S0377221705001360
http://www.sciencedirect.com/science/article/pii/S0377221705001360
http://www.sciencedirect.com/science/article/pii/S0191261506001044
http://www.sciencedirect.com/science/article/pii/S0191261506001044


EXPECTED PASSENGER TRAVEL TIME FOR TRAIN SCHEDULE EVALUATION & OPTIMISATION 39

2.2 Expected Passenger Travel Time for Train
Schedule Evaluation & Optimisation

Full paper presented at International Association of Railway Operations Research
(IAROR), Copenhagen, Denmark, 13-15 May 2013

In the previous section 2.1, describing reflowing, we derived all the local passenger
numbers for each train ride, train dwell and passenger transfer activity in the
train service network graph. In this first section about retiming, we start to
set up a mathematical formula for the objective of a timetable. The passenger
numbers calculated in section 2.1 will all appear in this function. Essentially
they will be multiplied with the durations of the associated activity, ride, dwell
or transfer. In this retiming step, passenger numbers are constants here, while
the activity durations are the variables to be optimised. This is the actual
timetabling step.

For this cyclic timetabling problem, we base ourselves on the well known Periodic
Event Scheduling Problem (PESP) formulation [41]. [41] formulate a model of
linear constraints, all being either linear equalities or linear inequalities. This
model belongs to the class of mixed integer linear programming (MILP) models.
[41] mention no objective function and also in further research the objective has
been mainly absent from the timetabling models. As a consequence, thanks to
the present constraints, the resulting timetable is feasible (on a macroscopic
level), but due to the absence of an objective, the resulting timetable still
contains time supplements of an undesirable size, either too large or too small.
(These time supplements are either time reserves on ride or dwell or transfer
activities or are time buffers between couples of trains that follow each other
on the same railway track.) The reason is that there is nothing present in these
bare PESP models that penalises for this undesirable sizes of supplements.

As mentioned before, it will seem intuitively logical that very large supplements
on ride, dwell or transfer activities are not ideal. Indeed, passenger then have
to wait very long and lose time. But also if these supplements are very small, a
negative effect occurs. Indeed, the slightest primary delay on that activity then
makes that the timetable cannot be realised as planned. This would mean that
all planning was unrealistic and missing the point.

Especially in the case of a transfer, a very low supplement makes the transfer
time too short and causes passengers to miss the transfer. They will then have
to wait for the next train that takes them in the right direction. The optimal
supplement will be the result of a perfect trade-off between the expected time
costs of being in-time and of being over-time, each weighted with the integrated
respective probabilities that these in-time and over-time costs occur. For each
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activity, these probabilities and costs can be calculated mathematically, based
on the numbers of passengers in the participating activities, the type of these
activities and the relevant expected delays.

To obtain a practically usable timetable, it is essential to make this trade-off. In
a mixed integer linear programming (MILP) model, this can be done by adding
an objective function to the bare PESP model that only contains constraints.
This paper sets up the objective function of total expected passenger journey
time in practice, which makes this trade-off in all locations over the whole
network.

Our paper uses negative exponentials as stochastic distributions of primary
delays on ride, dwell and transfer activities. Another common choice would
have been a Weibull distribution. The essential difference is that the Weibull
distribution has a zero on time probability and then quickly peaks to maximal
probability for some very low delays to then drop down quite quickly to larger
delays again. Since we already took into consideration a minimum time that
contains 5% on top of the bare calculated minimum, it is seen in practice that
the probability of having a 0s delay is not zero. This means that the negative
exponential distribution is more suitable in our case.

In our model, we have chosen a transfer penalty of an hour because we know
this is the worst case situation for an hourly timetable. A penalty of half an
hour could be closer to the average value in practice. However, we prefer to
have a known worst case over a possibly underestimated average. An improved
modelling approach over the hour upper bound would be to model the actual
waiting time until the departure time of next train in the same end station or
same direction. First, the ‘ same direction’ is not a clear concept. For how
many stations should it be the same direction? Even supposing that one would
require the next train to be one that stops at the end station the passenger was
going to, one does not know its departure time yet, so let alone the time to wait
until that departure time. Even if one would manage all that, it would still have
to be done for all passenger streams, split up between different destinations
separately. This would be a large effort. Anyway, the fact that one does not
know the train departure times yet makes it either totally impossible or close
to that.

Since the following paper concentrates on the objective function, the constraints
of the model are given in another publication in the journal Transportation
Research, Part B, reproduced in section 2.4.

The following paper mentions that our large upper bounds on supplements
solve the infeasibilities that other researches with lower artificial upper-bounds
sometimes struggle with. In our paper in section 2.4, we give mathematical proof
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that our upper-bounds can never give rise to our model becoming infeasible.
When too many trains are specified in the input, of course our model can still
become infeasible, but this is a matter of lower bounds on headways and cannot
be avoided.
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Abstract
When evaluating and optimizing the national railway timetable for all passenger trains in
Belgium, we use the criterium of expected total passenger travel time in practice. During
evaluation, we measure this, during optimization, we try to minimize this. The focus in
this paper is to analytically derive the total passenger time as a stochastic function of the
schedule. In a previous paper [9], we already derived the necessary local passenger flows
from ticket sales data. These flows will serve as fixed weights in this new objective function.

We start from measured delays in the current schedule and assume that they can be de-
scribed well by a negative exponential distribution. In the case of constructing an optimized
schedule, we assume delays will also occur in the new schedule according to the same dis-
tribution. We believe this is a conservative assumption, since the optimized schedule will
be more robust against delays.

We then decompose the global schedule of actions into local actions or pairs of subsequent
actions, and derive probabilities and objective functions on the corresponding one or two
local actions only. We sum these local functions to obtain a global objective function. This
then becomes the schedules’ global quality criterium. We linearize this and use the result as
the objective function of a linear programming based optimizer. With this objective func-
tion, we optimized the train schedule for the Belgian railways, which proves the method is
scalable to large and complex real-life problems.

Keywords
Railway Timetabling, Expected Passenger Time, Objective Function, Stochastic Optimiza-
tion
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1 Introduction

We consider total passenger travel time in practice as the most important criterium for judg-
ing the quality of a train schedule [1]. In such a objective function, we need to use passenger
numbers [9] instead of trains as weight factors. In evaluating an existing schedule we should
check that this objective function stays low and that few or no planned transfers are missed
frequently, especially if many people are transferring. In optimizing a schedule, we should
guarantee these properties. Not only transfers, but also ride and dwell actions should be
planned with supplements that are neither too small, such that they are unable to absorb
any practical delay, nor too big, such that they create unnecessary idle time in practice. In
this paper, we analytically derive the stochastic expected passenger time on each location
throughout the network, so that it can be used for evaluating if a specific supplement is well
chosen or not. The global function of total expected passenger time is derived from this,
which directly gives a practical quality criterium for the whole schedule. This global func-
tion (or some convex, linear approximation of it) will also be used as the objective function
for a (linear) solver when optimizing.

2 Related Research Overview and Comparison

Concerning linear modeling of a train service, some theoretical research has been carried
out already [3, 4, 5, 6, 8, 10, 11]. The first schedule that has been mathematically calculated,
be it only for feasibility and not for optimality, was the one for the Netherlands, and is due
to Kroon et al. [5]. Whether one of these schedules was actually put in practice is unclear.
Christian Liebchen states [6] to have produced the first schedule that was mathematically
calculated and then also put into practice. This included both schedule feasibility as well as
optimization of some selected transfers and concerned the Berlin Underground, containing
37 train relations. We go further here, by handling a much larger network - all periodic
passenger trains in Belgium - and more importantly, using an all-embracing optimization
objective function: passenger time in practice, which automatically considers all potential
transfers [9]. Since we minimize the objective function, the resulting timetable will be
robust, and this, in a natural, consistent and balanced way, across all ride, dwell and transfer
actions. The idea of using expected passenger time as a objective function to minimize
is based on research from Vansteenwegen et al.[12, 13] and Dewilde et al. [1]. The great
power of this objective function is that it gives an automatic and sensible trade-off between a
speedy yet robust service, where buffers and supplements are neither too large nor too small.
It also weighs and balances all minutes spent in the network fairly across all passengers. For
optimization of a schedule, apart from a objective function, of course, a large number of hard
constraints is necessary. We implemented and use all of these in practice, but they are not
discussed in this paper. The sole focus of this paper is the objective function.

3 Decomposing the Train Service Network into Actions with Local
Passenger Flows

We model each train trip as consisting of five types of actions. Figure 1 shows that each ac-
tion can be represented by a rectangle with a width, indicating the planned duration of this
activity and the height, indicating the number of people participating in that action. A train
trip can be seen as a sequence of mainly blue train ride and yellow train dwell actions. Ad-
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ditionally, there are three types of passenger actions: green colored source actions, which
represent people getting on the train, orange colored transfer actions representing passen-
gers walking from one train to another, and red sink actions, representing people arriving at
their destination.

Like Meng [7], Goverde [2], and Vansteenwegen et al. [12, 13], we suppose a general
negative exponential delay distribution for the duration of each of the actions: ride, dwell
and transfer. Source and sink actions can be considered as having a zero expected delay. The
duration of source and sink actions does not influence the planning. They are only present
in Figure 1 to indicate per train, the number of passengers entering or exiting the station at
each of its stops. The ride, dwell and transfer actions all have a given minimal duration.
After each of these three actions, a time supplement is added. Figure 1 shows these in a
lighter color shade of blue, yellow and orange for the respective actions. These supplements
contain the time to buffer possible delays of the previous action(s), but can also be much
bigger than that in case the subsequent action has to start much later to allow departing or
transferring passengers to enter the train considered. The durations of these buffers or filler
actions are called the supplement times, and are the only relevant time parameters present in
our objective function: the total expected passenger travel time. The optimization problem
we consider here, in the so called retiming phase [9], is to determine a supplement time for
each action, so that the total expected passenger travel time is minimal. Note that Figure 1
shows the planned schedule and that actual delays on actions can be smaller than their shown
supplements, in which case there is slack time, but that when actual delays are bigger than
the supplements, delay will propagate, yet hopefully be absorbed by supplements later.

The top couple of trains in Figure 1 are taken from the current Belgian planning, and the
bottom couple of trains show the time optimized version according to the objective function
we will derive here. Some corresponding actions between both schedules are indicated
with the same numbers in grey circles. Note that there are two passenger transfers between
the two trains (Numbers 1=3 and 2=4) and that this influences the relative time alignment
between the two trains. We also suppose that each of the trains occurs every hour. It must
be noted that the current expected delay distributions on each action currently are realistic,
but fictive. In the end, these will be replaced by distributions based on actual measurements.

Whether the bottom couple of trains takes more or less planned passenger time is not
so relevant. However, in operation, taking all statistical occurrences of these train trips
together, for all the actual numbers of passengers, the expected passenger time in practice
will be lower than for the original top train couple. This is the case, because the bottom
couple of trains will be more robust against operational delays on its actions. So, this global
objective function allows us to evaluate as well as optimize the timing for trains. To derive
this function, we will now start with introducing the level of action pair types.

4 Regrouping per Action Pair Type

Using a bottom up approach, we now cut up a train schedule at ride departure times. We are
then left with separated parts, consisting of pairs of subsequent actions.

Similar to Vansteenwegen et al. [12, 13] and Dewilde et al. [1], we call passengers who
experience the successive actions: ride and dwell, through passengers. Transfer passengers
are the ones taking a ride and then a transfer action to the next ride action. Departing pas-
sengers follow a source action to a ride action. Arriving passengers come from a ride action
and go to a sink action. We call these four kinds of passenger types, the passenger flow
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types. We summarize these and their corresponding action types in table 1. In conclusion,
there are 5 types of actions which only occur in 4 types of pairs of subsequent actions.

Table 1: Four Passenger Flow Types and Corresponding Action Sequences
Passenger Action Action
Flow Type a b
Departing (Source) Ride
Through Ride Dwell
Transfer Ride Transfer
Arriving Ride (Sink)

It must be clear that during their journey, a single departing passenger, becomes a
through passenger, can become a transfer passenger, a through passenger again and finally
always becomes an arriving passenger. Each passengers’ flow type is only locally valid, for
each two successive actions.

So we decomposed the total passenger flows on all trains into actions, to then recompose
them into pairs of subsequent actions, corresponding to a particular passenger flow type.
Each type of passenger is interested in having a minimal expected travel time for all the
action pairs he undergoes.

For through and transfer passengers, the exact trade-off will be dictated by minimization
of the expected passenger travel time. This depends on two actions and their delays, so for
this, convolution of the delay distributions of both actions will be necessary.

For arriving passengers, only the last ride action matters for the delay on this last part
of their journey.

For departing passengers, we will reasonably suppose their travel time starts counting at
the planned departure time. Indeed, their choice to potentially arrive earlier to avoid missing
their departure train, is independent of any particular time we will assign to this departure
event. So their relevant departure delay is the delay of the previous ride and dwell action pair
of their train, when such a pair exists. If such a pair does not exist, the departing passengers
are catching a train at its very first ride action, and we suppose there is no possible delay
nor associated passenger time cost.

For each of the four passenger flow type cases, a corresponding pair of action types,
makes up the time in between two subsequent ride departure times. They correspond to the
times we want to evaluate or optimize, weighted with the net corresponding passenger flow
number on this action pair.

We know that, in reality, delays can be accumulated over a full train journey from be-
ginning to end. This is often the case when at places where delays often occur, no time
supplements are inserted to absorb these delays. In this research, we try to do exactly this:
calculate supplements that absorb enough delay locally, not globally, yet not too much, since
we still want to maintain a speedy service. In this way, we avoid that delays propagate in
most cases. On top of this, for each train, we will accumulate sequences of undisturbed
blocks of ride-dwell-pairs up to the point where either the passenger numbers change, or
another train enters or exits the same track. For each such block, the measured delay is
accumulated and the (accumulated) supplements are then correctly placed at the end of the
block only, as can be seen in Figure 1(b) by the position of the light blue rectangles in the
optimized schedule.
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5 Local Objective Function Derivation

We now analytically derive the expected passenger time in practice of one action and of an
action pair, based on their delay distributions.

5.1 One Single Action Only

Fitting Model Delay Distribution to Delays
We first consider an action a or process with a minimum time m and a probabilistic delay
variable x as described by Vansteenwegen et al. [12, 13]. We can measure the occurrences
of delays for this process and fit a normalized negative exponential distribution on these
measurements. The probability pa(x) on a delay x can then be expressed as

pa(x) = ae−ax. (1)

Note that (1) is normalized which is required for a probability distribution. Indeed
∫ ∞

0

pa(x)dx =

∫ ∞

0

ae−ax = −e−ax
∣∣1
0
= (−0)− (−1) = 1. (2)

The fitting is done by choosing the single negative exponential distribution that has the
same expected value da as the originally measured discrete delay sample histogram. For
action a, for the measured discrete histogram, considering samples collected in N groups,
per value xi at index i and respective number of occurrences hi, this gives

da =

∑N−1
0 hixi∑N−1
0 hi

. (3)

For the continuous distribution the equivalent expected value is 1

ca =

∫ ∞

0

xae−ax =
1

a
, (4)

Our fitting criterium is that the expected value of the fitted distribution must equal the
expected value of the original distribution. This corresponds to

ca = da, (5)

which, considering (3) and (4) gives

a =

∑N−1
0 hi∑N−1

0 hixi

. (6)

In Time Probability
For this section, to ease the derivation, we ignore the part of the time cost that is related to the
minimum time m for an activity. This can be done because this part does not depend on any
supplement choice and as such will not influence comparative evaluation nor optimization.

For now, we suppose our activity a is to be followed by another activity b that, according
to the planning, starts at time D0 later than the end of the current activity a. So we suppose

1Whenever a calculus step is not trivial, the PDF version of this paper allows the reader to click right of the
respective equal sign, which will send the formula in Mathematica notation to www.wolframalpha.com and his
invoked browser will then display the result.
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that D0 is the time supplement we will decide to add between activities a and b. Activities
a and b are the pairs of activities discussed above, D0 is the supplement between these.

We have a possibility that we end our current activity within time supplement D0. We
calculate the in time probability that this happens as

pa,x≤D0(D0) =

∫ D0

0

pa(x)dx =

∫ D0

0

ae−axdx = 1− e−aD0 . (7)

In Time Cost
Since all time units are supposed to be equally weighted, the corresponding unit time cost
of this supplement D0 is

UCa,x≤D0(D0) =

∫ D0

0

D0pa(x)dx = pa,x≤D0(D0) ∗D0 = (1− e−aD0)D0. (8)

We call UCa,x≤D0
in (8) the in time cost of a supplement D0. This cost is called unit

cost because this is the cost for one passenger and for each time unit experienced with a
unity annoyance weight or level.

Over Time Probability
Now we suppose that we missed the start of activity b because we were delayed in activity
a by more than the introduced supplement D0. We now also suppose that there is a second
chance (for instance the next train) to catch b in time D1 i.o. D0, where D1 > D0. The
over time probability that we miss b at D0 but can catch b at D1 is

pa,x≥D0(D0) =

∫ D1

D0

pa(x)dx =

∫ D1

D0

ae−axdx = −e−ax
∣∣D1

D0
= e−aD0 − e−aD1 . (9)

D1 could be taken to be∞ if no further b alternatives are considered.

Over Time Cost
When the delay of the activity a somehow takes longer than D0 we cannot catch the next
activity b that starts at that time. We suppose we must then catch the alternative activity,
which we suppose starts at time D1 > D0. When trying to catch the ride of another train
after a transfer for example, this will be the ride action of the next train in initially the same
direction. We will often find times like about one hour or half hour or so in a practical,
regular train service. This can be enforced by requiring that n trains per hour leave at
regular time intervals of about 1/n-th of an hour. The parameter D1 is supposed to be
known, while D0, in the optimization context, is the variable we want to find an optimum
for. We can again, similarly, calculate the probability that we can catch the activity at time
D1 and the corresponding time cost as





pa,D0≤x≤D1(D0, D1) =
∫ D1

D0
pa(x)dx =

∫ D1

D0
ae−axdx = e−aD0 − e−aD1

UCa,D0≤x<D1(D0, D1) =
∫ D1

D0
pa(x)D1dx = pD0≤x≤D1D1

= (e−aD0 − e−aD1)D1.

(10)

Note that probabilities and unit costs are positive.
Going on one more step, from D1 to D2 we have similar formulas, by simply substitut-

ing D2 for D1 and D1 for D0 in (10) or in general

48 CYCLIC TIMETABLING FOR ENTIRE COUNTRIES







pa,Dn−1≤x≤Dn(Dn−1, Dn) =
∫ Dn

Dn−1
pa(x)dx =

∫ Dn

Dn−1
ae−axdx

= e−aDn−1 − e−aDn

UCa,Dn−1≤x<Dn(Dn−1, Dn) = pDn−1≤x≤DnDn

= (e−aDn−1 − e−aDn)Dn.

(11)

All Time Units are Weighted the Same
If all time units are considered to have the same subjective annoyance, the total probability
and unit time cost over all subsequent time intervals is

{
pa,D0≤x<Dn(D0, D1, D2, ..., DN ) =

∑N−1
n=0 pa,Dn−1≤x≤Dn(Dn−1, Dn)

UCa,D0≤x<Dn(D0, D1, D2, ..., DN ) =
∑N−1

n=0 UCa,Dn−1≤x≤Dn(Dn−1, Dn),
(12)

where N is the number of terms we want to consider and D−1 = 0 to simplify notation.
The higher n gets, the lower the contribution to the result becomes, due to the decreasing
probabilities of the integration interval between Dn−1 and Dn. Figure 2(c), shows a plot
of these probability functions. We call this the one dimensional case because only a delay
on one action plays a role here. D1 = 39 and D2 = 54, so 15 time units after the first
repetition, a new repetition of the next action creates a possibility to catch it again.

Figure 2(e) shows an example of the first three terms of the unit cost in (12) for chosen
values 39 and 54 for D1 and D2 respectively. The expected delay duration of action a is
da = 6. Clearly the total time cost gets minimal when D0 = 10 time units. Note that the
third term, UCD1≤x<D2

is constant for all values of D0 and as such does not influence the
value of the optimal D0 supplement. Also, this third term is much less important in absolute
value, compared to the first two terms.

In practice, for this case with constant annoyance level for all types of time units, we
will only use the first two terms to calculate the total cost.

Time Units Can Have Different Weights
For passengers, some time units are sometimes considered more annoying than others. This
depends on the activity. For example, riding feels more useful and pleasant than dwelling.
Also, when train connections are missed, annoyance grows.

Like [12, 13], we model these annoyances by multiplying each time unit by a weight.
We introduce the weight wa,i for the delay x of an activity a where i stands for the number
of next activity instances that has been missed already. This holds for a passenger on a
specific switching from one activity to the next. Of course, annoyance grows when missing
more next activity instances, so it will hold that

∀a ∈ A : ∀i ∈ N : wa,i ≤ wa,i+1. (13)

We further introduce wc,i as the weight for the left over idle time D0 − x. The prob-
ability calculation remains the same as in (8) and (10) in the previous paragraph, but the
corresponding unit cost integrals become somewhat more involved. Indeed,

wUCa,x≤D0(D0) =
∫ D0

0
(wa,0x+ wc,0(D0 − x))pa(x)dx

= wc,0D0

∫ D0

0
pa(x)dx+ (wa,0 − wc,0)

∫ D0

0
xpa(x)dx

= wc,0D0pa,x≤D0(D0) + (wa,0 − wc,0)UCa,x≤D0(D0).

(14)
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(f) Obj. Unit Costs for 2 Actions, da = 4.0, db = 2.0
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(g) Subjective Unit Costs for 1 Action, da = 6.0
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(h) Subj. Unit Costs for 2 Actions, da = 4.0, db = 2.0

Figure 2: Probablities (p), Expected Passenger Time (UC) and Weighted Expected Passen-
ger Time (wUC) as functions of the (sum of) the chosen supplements (x). Different curves
for supplements being less than D0 (in-time), between D0 and D1 (over-time), and their
sum (total-time), on the vertical axis. x on the horizontal axis. All units are in minutes. (a)
is the legend for (c), (e) and (g). (b) is the legend for (d), (f) and (h).
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Note that UCa,x≤D0(D0), in this weighted case, has been redefined as
∫D0

0
xpa(x)dx

instead of
∫D0

0
D0pa(x)dx, in the unweighted case. From the context it will be clear what

we mean with it.
We derive the needed expressions for probabilities and unit costs as

pa,0≤x≤D0(D0) =
∫ D0

0
ae−axdx = 1− e−aD0

UCa,0≤x≤D0(D0) =
∫ D0

0
xae−axdx = 1−(aD0+1)e−aD0

a
.

(15)

Note that some terms in (14) may become negative, for example when wa,0−wc,0 < 0,
but the total value of wUCa,x≤D0(D0) will always be positive. The same holds for the next
interval, (D0, D1) where,

wUCa,D0≤x<D1(D0, D1)

=
∫ D1

D0
(wa,0D0 + wa,1(x−D0) + wc,1(D1 − x))pa(x)dx

= ((wa,0 − wa,1)D0 + wc,1D1)
∫ D1

D0
pa(x)dx+ (wa,1 − wc,1)

∫ D1

D0
xpa(x)dx

= ((wa,0 − wa,1)D0 + wc,1D1)pa,D0≤x≤D1(D0, D1) + (wa,1 − wc,1)UCa,D0≤x≤D1(D0, D1),
(16)

where we derive the expressions for probabilities and unit costs as

pa,D0≤x≤D1(D0, D1) =
∫ D1

D0
ae−axdx = = e−aD0 − e−aD1

UCa,D0≤x≤D1(D0, D1) =
∫ D1

D0
xae−axdx = (aD0+1)e−aD0−(aD1+1)e−aD1

a
.

(17)

Based on

wUCa,Dn−1≤x<Dn(D0, D1, ..., Dn−1, Dn)

= (
∑n−1

i=0 (wa,i − wa,i+1)Di + wc,nDn)pa,Dn−1≤x≤Dn(Dn−1, Dn)
+ (wa,n − wc,n)UCa,Dn−1≤x≤Dn(Dn−1, Dn),

(18)

one can prove that the formula (16), generalized for N subsequent chances on the next
action, becomes

wUCa,0≤x<DN (D0, D1, D2, ..., DN )

=
∑N

n=0[(
∑n−1

i=0 (wa,i − wa,i+1)Di + wc,nDn)pa,Dn−1≤x≤Dn

+ (wa,n − wc,n)UCa,Dn−1≤x≤Dn ]

=
∑N−1

n=0 ((wa,n − wa,n+1)Dnpa,Dn≤x≤DN )

+
∑N

n=0(wc,nDnpa,Dn−1≤x≤Dn + (wa,n − wc,n)UCa,Dn−1≤x≤Dn),

(19)

where the probabilities p and unit costs UC take the form as in equation (17), with the
respective indices.

As in the previous case without the weights, we demonstrate that this weighted unit
objective function, considered as a function of D0, with fixed Di,∀i > 0, has a minimum for
a certain D0. Figure 2(g) shows this for the subjective time unit weights wa,0 = 1.0, wa,1 =
1.5, wa,2 = 2.0 and wc,0 = 2.0, wc,1 = 3.0 and wc,2 = 4.0. If the weights would all be 1
we get the same cost curves as in Figure 2(e).

The total cost has now increased since for every time unit a weight factor equal or bigger
than 1.0 is used. We also see that the minimum cost is now shifted to about D0 = 12. That
the optimal supplement is bigger here stems from the fact that the higher annoyance wc,i

of the time units after having missed the consecutive next action instances leads to a higher
cost for supplements D0 that are so low that they often cause such a miss. So the subjective
appreciation of each type of time unit can have an effect on the optimum supplement value.
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Note that the formula (18) for wUCDn−1,Dn
with subjective weights, simplifies to

the formula for UCDn−1,Dn
for the case where all weights are equal to 1 case in (11).

Also, the formulas (18) and (19) remain even valid if another delay probability distribution
than the negative exponential is chosen. Of course the corresponding pa,Dn−1≤x≤Dn and
UCa,Dn−1≤x≤Dn

have to be recalculated then.
By simply taking the minimum of the objective function, we are now able to calculate

the optimal supplement that should be inserted in the case where only one probabilistic
delay plays a role. Sometimes however, two consecutive activities with their own delay
distribution will occur. We treat this case in the next section.

5.2 Pair of Two Subsequent Actions

Sum of Delays
We consider two subsequent actions a and b. Their probabilistic delay variables are called
x and y respectively. Again, we can measure the occurrences of delays for both processes
and fit a normalized negative exponential through these measurements. This gives

{
pa(x) = ae−ax

pb(y) = be−by.
(20)

The fitting is done similarly to the one dimensional case and gives for actions a and b,
for their respective expected delays, also called a and b:

{
a = 1/da
b = 1/db.

(21)

We suppose the variables x and y and their distributions are independent, which could
be a simplification of reality.

In train planning, the most important times are the ones where a train leaves a station
after a stop. This is the latest time a passenger can catch the train, are the times to be
published and respecting them in real time is what matters most to passengers. This is the
promise to the customer that has to be kept as good as possible. Traditionally arrival times
are also published. This is practical for a passenger to be able to plan the activity after his
train arrival. But consider that it is generally worse to miss your train at departure than being
a few time units later at arrival.

We consider a to be a ride action. b can then be a subsequent dwell, transfer or sink
action. Dwell means waiting in a station inside the train. Transfer means a transfer to
another train in the same station. Sink means the passenger exits the station and the train
system. Dwell and transfer actions have endings that can be delayed. For a sink, a delay is
not useful to model since the time for sinking is not part of the train service model.

To mathematically formulate expected passenger time, we are first interested in the prob-
ability that the summed delay x+y of both actions together is smaller or bigger than a certain
supplement D, that is supposed to statistically, mostly absorb this summed delay. We also
will calculate the associated time costs of introducing this supplement. Balancing probabil-
ities and respective costs, we will obtain closed formulas for the total cost of introducing a
supplement D on a subsequent pair of actions. Weighting these costs with the number of
passengers on the second action of each pair, we arrive at a formula for the total cost of each
fork structure. A fork is the union of a ride edge and its directly subsequent, unique dwell
edge, unique sink edge and potentially multiple transfer edges to different other trains. In
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Figure 1, a fork can be identified as a collection of a blue (ride) rectangle and its right direct
neighbours: the yellow (dwell), orange (transfer) and red (exiting) rectangles.

Our graph, inherently present in the representation in Figure 1, is set up so that a dwell
edge combines all passenger flows dwelling in one edge, irrespective of their origin and
destination. Similarly a source edge combines all passengers in one edge, irrespective of
their destination and a sink edge all passengers in one edge, irrespective of their origin.

In Time Cost
Contrary to the one dimensional case in the previous paragraph, we will immediately con-
sider the most general case of weighted, subjective time units. If all time units are considered
to have the same weight, the w values all equal 1.

The cost of suffering a delay x on action a (e.g.: ride) as well as a delay y on action b
(e.g.: dwell) while we are still in time for the next ride start is

wa,0x+ wb,0y, (22)

where wa,0 is the possibly subjective weight for an action a in these conditions. Simi-
larly for wb,0.

If we are still in time, meaning the supplement D0 against delay, is not exceeded yet,
some time until D0 is left over. Passengers will wait after actions a and b have completed,
during this time D0 − x− y. This time also has to be accounted for and has an annoyance
weight of wc,0. So this cost is

wc,0(D0 − x− y). (23)

Together, the total in time cost of experiencing a delay x+ y ≤ D on these two actions
is the sum of (22) and (23), so

wa,0x+ wb,0y + wc,0(D0 − x− y). (24)

Note that for wa,0 = wb,0 = wc,0 = 1, the total in time cost is D0.
For every combination of delays x and y, we now have to see how often they occur. This

is given by the combined probabilities

pa(x)pb(y). (25)

Integrating over x+y ≤ D0 which forms a rectangular triangle gives us the in time cost

wUC0≤x≤D0

=
∫ D0

0

∫ D0−x

0
(wa,0x+ wb,0y + wc,0(D0 − x− y)) pa(x)pb(y)dydx

= wc,0D0

∫ D0

0

∫ D0−x

0
pa(x)pb(y)dydx

+ (wa,0 − wc,0)
∫ D0−x

0
xpa(x)pb(y)dydx+ (wb,0 − wc,0)

∫ D0−x

0
ypa(x)pb(y)dydx

= wc,0D0pavb,0≤x+y≤D0

+ (wa,0 − wc,0)UCavb,x,0≤x+y≤D0 + (wb,0 − wc,0)UCavb,y,0≤x+y≤D0 .
(26)

For a 6= b we get
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pa6=b,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
(ae−axbe−by)dydx = a(1−e−bD0 )−b(1−e−aD0 )

a−b

UCa6=b,x,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
x(ae−axbe−by)dydx

= 1−(aD0+1)e−aD0

a
− [e−aD0((b− a)D0 − 1) + e−bD0 ] a

(a−b)2

UCa6=b,y,0≤x+y≤D0 =
∫ D0

0

∫ D0−y

0
y(ae−axbe−by)dxdy

= 1−(bD0+1)e−bD0

b
− [e−bD0((a− b)D0 − 1) + e−aD0 ] b

(a−b)2
.

(27)

Care is taken that the last version of each expression in (27) only has negative exponents,
so that numerical stability is guaranteed and overflow is avoided.

When a = b we would get a division by zero for each of the expressions in (27), so we
recalculate for this special case. This gives

pa=b,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
(ae−axae−ay)dydx = 1− (aD0 + 1)e−aD0

UCa=b,x,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
x(ae−axae−ay)dydx = e−aD0 (−aD0(aD0+2)−2)+2

2a

UCa=b,y,0≤x+y≤D0 =
∫ D0

0

∫ D0−y

0
y(ae−axae−ay)dxdy = e−aD0 (−aD0(aD0+2)−2)+2

2a
.

(28)

Over Time Cost
The integral in time delay cost wUC0≤x≤D0

for delays below D0 in (26) gives us a cost
supposing x + y ≤ D0. Since x + y > D0 can also hold, we calculate this corresponding
over time cost next.

When x + y = D0, the ride action after a and b takes place immediately and can still
just be caught by the passengers. If x+ y > D0, they will miss this next action. For action
b being a transfer, this means they will have to catch the next train in the same direction.

Suppose the next leaving train in the desired direction leaves at time distance D1 > D0.
Then we get for the cost part for x+y between D0 and D1, which forms a trapezium which
fits snuggly against the triangle area, from (26) as

wUCD0≤x≤D1

=
∫ D0

0

∫ D1−x

D0−x
[(wa,0 + wb,0)/2 ·D0 + (wa,1 + wb,1)/2 · (x+ y −D0)

+ wc,1(D1 − x− y)] pa(x)pb(y)dydx

+
∫ D1

D0

∫ D1−x

0
[(wa,0 + wb,0)/2 ·D0 + (wa,1 + wb,1)/2 · (x+ y −D0)

+ wc,1(D1 − x− y)] pa(x)pb(y)dydx
= ((wa,0 + wb,0)/2− (wa,1 + wb,1)/2) ·D0 + wc,1D1)

(
∫ D0

0

∫ D1−x

D0−x
pa(x)pb(y)dydx+

∫ D1

D0

∫ D1−x

0
pa(x)pb(y)dydx)

+ ((wa,1 + wb,1)/2− wc,1)

(
∫ D0

0

∫ D1−x

D0−x
xpa(x)pb(y)dydx+

∫ D1

D0

∫ D1−x

0
xpa(x)pb(y)dydx)

+ ((wa,1 + wb,1)/2− wc,1)

(
∫ D0

0

∫ D1−y

D0−y
ypa(x)ypb(y)dydx+

∫ D1

D0

∫ D1−y

0
ypa(x)pb(y)dxdy)

= ((wa,0 + wb,0)/2− (wa,1 + wb,1)/2) ·D0 + wc,1D1)
(pavb,D0≤x+y≤D1,p1 + pavb,D0≤x+y≤D1,p2)

+ ((wa,1 + wb,1)/2− wc,1)(UCavb,x,D0≤x+y≤D1,p1 + UCavb,x,D0≤x+y≤D1,p2)
+ ((wa,1 + wb,1)/2− wc,1)(UCavb,y,D0≤x+y≤D1,p1 + UCavb,y,D0≤x+y≤D1,p2),

(29)
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where a v b stands for the relation between a and b: equality or non-equality and p1
stands for part 1, the parallellogram and p2 for part 2, the triangle, that together make up
the trapezium over which we integrate here. Note that the swapping of integration order of
x and y is only done to make the temporary resulting formulas as simple as possible. For
each line in (29), the sum of two double integrals over the full trapezium is the same when
integrated in both integration orders.

The averaging of weights in (wa,i + wb,i)/2 appears because for a time x + y where
D0 ≤ x+ y ≤ D1, it is not known which part of the time was spent for activity a versus b.

The formulas for the unit probabilities and unit cost in this D0 to D1 case for a 6= b are

pa6=b,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
ae−axbe−bydydx

= (e−bD0 − e−aD0 − e−bD1 + e−aD0−b(D1−D0)) a
a−b

pa6=b,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
ae−axbe−bydydx

= − e−b(D1−D0)−aD0 a
a−b

+ e−aD1 b
a−b

+ e−aD0

UCa6=b,x,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
xae−axbe−bydydx

= ((−aD0 + bD0 − 1)e−aD0 + e−bD0)(1− e−b(D1−D0)) a
(a−b)2

UCa6=b,x,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
xae−axbe−bydydx

= [(D0(b− a)− 1)e−aD0−b(D1−D0) + (D1(a− b) + 1)e−aD1 ] a
(a−b)2

+ [(aD0 + 1)e−aD0 − (aD1 + 1)e−aD1 ]/a

UCa6=b,y,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−y

D0−y
yae−axbe−bydxdy

= [(−bD0 + aD0 − 1)e−bD0 + e−aD0)(1− e−a(D1−D0)] b
(a−b)2

UCa6=b,y,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−y

0
yae−axbe−bydxdy

= [(D0(a− b)− 1)e−bD0−a(D1−D0) + (D1(b− a) + 1)e−bD1 ] b
(a−b)2

+ [(bD0 + 1)e−bD0 − (bD1 + 1)e−bD1 ]/b.

(30)

For the a = b case the equivalent expressions are

pa=b,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
ae−axbe−bydydx = aD0(e

−aD0 − e−aD1)

pa=b,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
ae−axbe−bydydx = e−aD1(a(D0 −D1)− 1) + e−aD0

UCa=b,x,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
xae−axbe−bydydx = aD0

2(e−aD0 − e−aD1)/2

UCa=b,x,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
xae−axbe−bydydx

= [e−aD1(a2(D0
2 −D1

2)− 2aD1 − 2) + 2(aD0 + 1)e−aD0 ]/(2a)

UCa=b,y,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−y

D0−y
yae−axbe−bydxdy

= aD0
2(e−aD0 − e−aD1)/2

UCa=b,y,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−y

0
yae−axbe−bydxdy

= [e−aD1(a2(D0
2 −D1

2)− 2aD1 − 2) + 2(aD0 + 1)e−aD0 ]/(2a).
(31)
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As in the previous paragraph, we could calculate a next cost term for wUCD1≤x≤D2
but

from Figures 2(e) and 2(g) we know that this will be a low cost and we can safely ignore
it. So the total local cost we consider is wUCloc = wUC0≤x+y≤D1

= wUC0≤x+y≤D0
+

wUCD0≤x+y≤D1 which can be calculated from (30) or (31).
Figure 2(d) shows a plot of the probability functions for the two subsequent action cases.

It differs from Figure 2(c) in that now both actions have delay distributions. Figure 2(d)
shows probability curves of which the second derivative changes its sign. This is due to the
convolution of these two distributions.

Figure 2(f) represents the total costs and its component costs from 0 to D0 and from D0

to D1 for objective time unit costs, all equal to 1. The minimum cost is obtained for about
D0 = 11 time units.

Figure 2(h) represents the same cost for the subjective time unit costs, wa,0 = 1.0,
wa,1 = 1.5, wb,0 = 1.0, wb,1 = 1.5, wc,0 = 2.0 and wc,1 = 3.0. We see that the minimum
in Figure 2(h) is not the same as in Figure 2(f). Now the minimum cost is obtained for
D0 = 12 time units. Similarly to the one dimensional case higher annoyance for time units
spent after having missed a next action results in introduction of a bigger supplement D0 to
help avoid this.

5.3 Optimal Sum of a Range of Supplements for (Ride,Transfer)-Action Pair

We now have derived the objective function for the (ride, transfer) action pair. We show in
Figure 3 that we are able to calculate the predicted optimum for the sum of two supplements
associated with two consecutive actions a and b. We show the results obtained for different
combinations of values of expected delays for action a (0, 1, 4, 10, 20) and b (0, 1, 2, 4). All
units can be seen as minutes. D1 is supposed to always be 60 here. The case (0, 0), meaning
no expected delay on either action, results in no supplements at all. One can also see that an
increase in any of the two expected delays results in an increased optimal supplement sum,
which is only logical.

Note that these optima are only valid for one action pair. A single supplement can
occur in multiple action pairs and their respective local objective functions. Each can have
a different optimum value. The global optimization will find a trade-off between these local
optima. Section 6 describes how this is done.

5.4 Specialization to All Flow Types: Different Combinations of In Time and/or Over
Time Costs

We have derived the objective function for a specific single action and for the (ride, transfer)
action pair. These are the most general cases. The other three cases, as mentioned in Table
1 can be derived from it. Departing passengers only have an over-time cost and no in-time
cost. Through and arriving passengers only have an in-time cost and no over-time cost. The
resulting functions are given in Figures 4(a) to 4(d).

5.5 Linearization

To be able to use the derived objective function in an optimization for a train service network
for an entire country, we want to use linear programming solvers. This means that our
objective function has to be linearized.
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Figure 3: Supplement Sum with Minimal Cost for a Range of Action Pair Expected Delays
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(a) Departing Passenger Objective Function (b) Through Passenger Objective Function

(c) Transfer Passenger Objective Function (d) Arriving Passenger Objective Function

Figure 4: Expected Passenger Time as Objective Functions of sum of supplements chosen
for the four Passenger Flow Types.

There are two options here to linearize the curves of the calculated objective functions in
Figures 2(e), 2(f), 2(g) and 2(h). One is to discretize the independent variable to some fixed
resolution, like a minute or a tenth of a minute. The other is to approximate the curves with a
number of line segments, which allows for the independent variables to remain continuous.
When inspecting these objective functions, one can see that they are quite smooth. There
are no sudden peaks or dips. This pleads for the second option. With only two line segments
the minimum resulting from the intersection of the two line segments is already very close
to the minimum of the original curves. For the 2-segment-approximation we use the least
squares method. We also tried the first option with a fixed resolution of a tenth of a minute,
but this resulted in many variables and an optimal schedule calculation times of a few hours
for just 20 trains. This also convinced us that the segment approximation method should
result in a faster yet accurate tool. The result of the linearizations are shown in the Figures
4(a) to 4(d) by the approximation of the green curves by the red segments.
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A black vertical line indicates the supplement that was chosen. In the cases 4(c) and
4(d) this results in the real local minimum. In the cases 4(a) and 4(b) the results are close
to the local minimum. This can happen when constraints or local objective functions in
other locations of the schedule play a more important role. We now explain how the local
objective functions are composed to form the global objective function.

6 Recomposing the Global Objective Function: Simply Summing

To evaluate the expected passenger time of a schedule, we need to look at all action pairs
present in the planned schedule and see how these contribute to the total passenger time.

In the previous paragraphs, we convoluted distributions of pairs of subsequent actions,
of which the first is always a ride action. In so doing, we formed forks of actions for which
we obtained a (weighted) unit time objective function. By multiplication with the correct
number of passengers present on these actions, we obtain the total cost of each action pair.

The weighted global objective function for the whole schedule is just the sum of all
local weighted objective functions. This is the case because, (1) we consider all passenger
minutes equal and (2) we don’t convolute the delay distributions across actions of different
(subsequent) forks. The second reason implies that we will actually determine a schedule
that is more robust than the real minimal expected passenger time would require. Our
schedule will have the advantage though that ride to next ride departure times are also more
dependable.

So our expected passenger time, which is the objective function to be minimized for
schedule optimization, becomes

wGC(D0(E)) =
∑

e∈Esrc
fe · wUCpredpredride(e),predwell(e)(D0,e,succride(e))

+
∑

e∈Ed∪Etr∪Esnk
fe · wUCpredride(e),e(D0,predride(e),e),

(32)
where wGC is the weighted global cost, E is the graph of all actions in the train service

network, D0(E) is a shorthand notation for all D0 that are present in the graph E, Ed is the
set of all dwell edges, Etr is the set of all transfer edges, Esnk is the set of all sink edges,
succride(e) is the ride successor edge associated with edge e ∈ Esrc, which is also the
successor edge of edge e. preddwell(e) is the ride predecessor edge associated with edge
e ∈ Esnk, which is also the predecessor dwell edge of the successor ride edge succride(e)
of e. predpredride(e) is the ride predecessor edge associated with edge preddwell(e) of
e ∈ Esnk. predride(e) is the ride edge associated with edge e, which is also always the
predecessor edge of edge e. fe is the local passenger flow over that action or edge e. Note
that only flows over non ride edges are directly present. The ride flow is simply the sum of
all flows on actions leaving from that ride action, and since flows for all these next actions
are present, the ride flows are present implicitly in the sum. D0,ea,eb is the D0 parameter for
that specific edge sequence pair (ea, eb) and wUCea,eb its weighted local objective function.

The last three columns in Table 2 structurally summarize what quantities are used in
(32) for each of the four passenger flow types. The column Flow of Action indicates the
action that determines the number of passengers on each action pair. Note that the number
of ride passengers is not present directly in any of the four cases, but as Figure 1 shows, it
equals the sum of dwell, transfer and sink passenger numbers subsequent to the ride action
considered. If we consider all terms in this sum, we account for every passenger correctly.
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Table 2: Four Passenger Flow Types, their Corresponding Action Sequences, the Action
Edges Used and their Time Cost Types

Passenger Action Action Time Flow of Edge Edge
Flow Type a b Cost Action a b
Departing (Source) Ride in Source PredPredRide PredDwell
Through Ride Dwell over Dwell Ride Dwell
Transfer Ride Transfer in+over Transfer Ride Transfer
Arriving Ride (Sink) over Sink Ride

The quality of a given schedule with given D0,e,∀e can now be directly calculated from
(32). For the sink edges, the two action formulas may be used with an expected delay of
db = 0 or very low. This essentially results in using the one action formula on the associated
ride edges, which can of course be used directly as well.

7 Knock-On Delays

In a similar way as the derivations made previously, we also derived a knock-on objective
function for each couple of trains using the same piece of track. This is a function of
the heading time between these two trains. Since in our schedule optimization, the order of
trains on a track unit is unknown in advance, a knock-on cost between each of the N∗(N−1)
couples of the N trains is added. When train a is scheduled very close before train b two
factors increase the total knocked-on passenger delay on b. One is a high probability of
delay on train a. The second is a high number of passengers on train b, since they are
the passengers experiencing the knock-on delay. These factors are present in our knock-on
objective function. We have used these knock-on costs in train schedule optimizations of all
periodic passenger trains in Belgium of which many pairs have train tracks in common and
even though there are many of them, they don’t significantly increase the computation time.

8 Results

We have constructed a model with all necessary constraints and with the objective function
derived here, for an increasing number of trains. The starting timetable is the one for all
trains departing between 7am and 8am on 13 March 2013. We used Gurobi 5.1.0 as the
MILP solver and ran it, set to 8 solver threads, on an Apple iMac with a 3.4 GHz Intel i7
processor and with 16GB 1333 MHz DDR3 Memory. The gap desired was set to what was
obtained as the gap of the first returned solution in earlier trials. Our results are given in
table 3.

The numbers of model variables (#columns) and constraints (#rows) both grow rapidly
as trains are added, but the pre-solver is usually able to reduce both numbers by about 50%.
For the last case, IC IR L P, we have rescheduled all 186 periodic (IC IR L) trains, as well
as the 17 non-periodic peak (P) trains departing between 7am and 8am. For each ride and
dwell action we assumed an expected primary delay of 3% on top of its minimum time. All
periodic trains are repeated every hour. The P trains occur just once in practice, but due to
our cyclic timetable, time slots are automatically reserved for them in every non-peak hour
too. Outside the peak period, these empty P slots can possibly be used for freight trains if
desirable.
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Table 3: Scalability of our Integer Linear Programming Model with necessary Constraints
and the Derived Objective Function

model model solver MILP passenger missed
train trains rows col- time gap time transfer
types umns reduction probability

(#) (#) (#) (s) (%) (%) (%)
IC 43 18747 13361 50 24.30 10.73 2.95
IC IR 82 48267 33035 449 32.35 12.38 3.11
IC IR L 186 102652 68504 2426 32.80 10.03 2.31
IC IR L P 203 225132 158860 3706 38.27 7.12 2.43

Compared to the IC IR L P-timetable currently in operation, our optimized timetable has
some advantages compared to the current one. First, it respects all minimum ride- and dwell-
times without exception. Second, it respects all headway time buffers of 3 minutes between
all train pairs on the same track section. Third, our calculations show that the average chance
of missing a transfer in the current timetable is 34.68% while in our optimized timetable it
is only 2.43%. The expected passenger time of our optimized schedule is 7.12% lower than
the original schedule. This result is obtained with supplements on ride and dwell actions up
to 15 minutes are allowed. Fourth, generating our schedule only takes 3706 seconds, while
it takes many human planners many months to generate the current timetable.

9 Conclusions

This paper has four main contributions. Firstly, by making a graphical representation as in
Figure 1 it becomes clear that we can decompose a general train network into actions of
five different types: ride and dwell train actions and the source, transfer and sink passenger
actions and then recombine pairs of subsequent actions into four local passenger flow types:
departing, through, transfer and arriving.

Thanks to this, secondly, supposing a general negative exponential delay distribution
for each of these actions, we analytically derived the probability and objective functions for
each of these local passenger flows, according to what matters for them at that location.
For transfers, this includes the probabilistic trade-off for catching or missing a next action.
These local functions of one or two supplement variables, indicate the cost tradeoff and can
be used to evaluate a given schedule on quality or even optimality of these supplements.

Thirdly, summing these local functions for the whole schedule delivers a global objec-
tive function that can be used by an optimizing solver directly. We also show how, for linear
solvers, optionally, convex linear approximate functions can be set up.

Lastly, together with the necessary train schedule constraints, we show in Figure 1 that
our method produces a schedule for two trains that, at face value, has apparent merits:
efficiency as well as robustness. We also used the derived objective function in producing a
passenger time optimal timetable for all 203 passenger trains in Belgium. This timetable is
quickly generated and is conflictless, efficient and robust by construction.
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2.3 A Passenger Knock-On Delay Model for Time-
table Optimisation

Paper presented at International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS) Dresden, Germany, 2-4 December
2013

The previous paper in section 2.2 derived all terms of the objective function:
total expected passenger time in practice, but has not yet described the complete
derivation of the expected passenger time due to knock-on delays. In this section,
these terms are derived and now added to the objective function. Essentially,
the knock-on delays are the delays that a second train experiences due to the
train in front of it being delayed. Only the number of passengers of the second
train experience this delay. So the total knock-on delay is the multiplication
of the number of passengers on the second train with the integrated products
for all cases of the probability that the first train will be so much delayed
that the second train has to start braking as well and the delay caused on the
second train. The probability that this occurs depends on the primary delay
distribution of both the first and the second train. Because a first, often delayed
train can delay a second, rarely delayed train with few passengers, which can in
turn delay a third train with many passengers, we also consider the direct effect
of the first on the third train. So for N trains planned on the same section, we
then have to consider the full clique of N ·(N−1) train pairs. Since the schedule
is cyclic, when a train A can delay a train B, train B can also delay the next
occurrence of train A in the next hour. This consideration of knock-on delays
for the full clique of trains is also necessary since the order of trains is not yet
known. Indeed, we are still in the process of timetabling which determines these
orders. The following paper derives the expressions for the knock-on terms that
can then be added to the objective function of our timetabling model.

We construct the train network for all 203 hourly passenger trains in Belgium,
departing between 7 and 8 am in the timetable of June 12th 2013. On this
train graph, we carry out an optimisation with these knock-on delays included
in the objective and, with certain assumptions about the primary delays, we
obtain a timetable with significantly reduced knock-on delays compared to
the original timetable. Indeed, in the original timetable, the knock-on delay
component amounts to 4.04% of the total expected passenger journey time,
while in the optimised timetable it only amounts to 2.60% of the total expected
passenger journey time. Note that the total is lower in the optimised than
in the original timetable, so the reduction is even stronger in absolute terms.
Indeed, it amounts to more than 40% reduction of total time. These results
show that our model is able to reorder trains and choose good train inter-times,

http://www.LogicallyYours.com/ITS2013.pdf
http://www.LogicallyYours.com/ITS2013.pdf
http://www.LogicallyYours.com/ITS2013.pdf
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so that the total expected knock-on delays can be significantly reduced.

Our timetable computation times do not significantly increase due to the addition
of the knock-on model. We also notice that increasing the assumed level of
primary delays does not increase the computation time for these timetables.
Moreover, larger assumed primary delays typically lead to a first feasible
timetable with a lower MIP gap.
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Abstract
In the process of timetable creation, sufficient time should be scheduled between any pair

of trains using a common infrastructure section in order to avoid that a delay on the first

train will cause a delay on the second train too. However, when this time buffer becomes

very high, the positive incremental buffering effect diminishes and other negative effects

may appear, like reduced timetable efficiency or lower than optimal remaining time between

the other trains on the same infrastructure resource. This means there is a trade-off to make.

We make this trade-off by analytically deriving the knock-on delays as passengers experience

it in practice and by including these delays in our goal function: total expected passenger

journey time in practice.

We use this goal function in our Mixed Integer Linear Programming (MILP) model to

optimise from scratch, the timetable of all 203 hourly passenger trains in Belgium. We then

also compare our resulting timetable with the original schedule, and conclude that both the

knock-on component as well as the total expected passenger time are reduced.

Keywords: Knock-On Delay Model, Expected Passenger Time, Integer Linear Programming,

Goal Function

1 Introduction

A railway timetable can be aptly represented by a graph. Graph vertices are train arrival and

departure times. The graph’s edges are either primary edges representing intra-train actions:

ride and dwell, or secondary edges, representing inter-train actions: transfer or turn-around.

Other secondary edges represent a required time difference: headway requirements [Kro09].

For all edges, primary or secondary, a minimum time is required and we also add a non-

negative supplement. Note that we use the term supplement also in the meaning of buffer
between two trains on a common infrastructure resource. The purpose of the supplements
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can be twofold. Firstly, they are sometimes needed as slack between two already planned

timetable times. Indeed, imagining that one would plan the primary edges first, some slack

would result for the inter-train transfer, turn-around and headway edges. Secondly, a larger

than slack-only supplement could be needed to make a timetable robust against delay. How-

ever, supplements may also not become too large, resulting in trains riding too slow or idling

too much and as such resulting in an inefficient planning. So, obviously there is a trade-off,

per supplement, between robustness and efficiency. Additionally, when edges are part of a

common graph cycle, the sum of minimum process times and supplements over all edges of

the cycle have to sum up to a multiple of the timetable period [Gov10]. This means choices

of supplements of these edges are related and one also has to be able to properly weigh the

costs and benefits of the supplement choices on different edges. We consider one train more

important than another when it has more passengers present on it. We could introduce arti-

ficial train class priorities, but prefer to directly weigh importance with passenger numbers

instead. In [Sel11] we derived passenger numbers on all trains at all locations, starting from

ticket sales data. With this information, we can formulate the total expected passenger time
in practice [Dew11; Sel13a] as a function of the timetable. More specifically, it is a function

of 3 parameters sets: (1) the action minima, (2) the assumed primary delays and (3) the

planned supplements. Secondary delays also increase this expected passenger time, but are

itself a function of the three mentioned parameter sets. The resulting total function is to

be minimised to generate an optimal timetable for passengers. The minima are fixed, so in

each timetable it will generate the same amount of expected time. The supplements are the

decision variables of the timetable, so given the delay assumptions, their values determine

any quality criterium of the timetable as expected passenger time, robustness and efficiency.

The total expected passenger time has been analytically derived as a function of minima

and supplements in [Sel13a] for departing, through, transfer and arriving passengers. In

this paper we add the derivation of the knock-on delay as a function of the minimum and

supplement present on a headway edge. Indeed both a headway minimum time as well as a

knock-on delay should be modelled whenever two trains on a common resource occur. So a

hard headway constraint and a soft knock-on cost as a term in the goal function are always

modelled on the same edge.

Section 2 lays out an analytical derivation of the knock-on delay function. Section 3

presents the results obtained when using these knock-on delay functions as terms in the goal

function for a system of all 203 trains currently departing between 7 and 8 am in the cyclic

Belgian timetable. Section 4 draws conclusions and hints at some further work.

2 Knock-On Delay Derivation

When train i is riding or dwelling on a track and it gets delayed, it can delay train j which

follows it on the same track. We will derive a cost function that gives us the expected delay

for all passengers on the second train as a function of the planned time in between the two

trains and the expected delays on these trains.
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2 Knock-On Delay Derivation

We define the number of passengers on train i as fi and on train j as fj . As [Sel13b]

explains, for trains riding in the same direction on a common track, headway edges exist

between both the vertices representing the beginning of the trains’ ride actions in both di-

rections, cyclically and also between the endings of the trains’ ride actions again in both

directions, cyclically. For trains riding in opposite directions on a common track, a headway

edge exists between the end of the first train’s ride action and the beginning of the other

train’s ride action and vice versa, cyclically. In the sequel, when we mention a knock-on

edge between train i and j, we more specifically mean the knock-on edge between two

vertices vi and vj , where these vertices can be a begin or end vertex of a ride edge.

We can suppose the vertices vi and vj , which represent event times, to experience primary

delays according to (commonly used [Han08]) negative exponential distributions

pi(x) = aie
−aix, pj(y) = aje

−ajy, (1)

where x and y are the primary delays of time points vi and vj and pi(x) and pj(y) their

respective probabilities. The expected delays of these distributions are calculated to be

ci =

∫ ∞

0
xaie

−aixdx =
1

ai
, cj =

∫ ∞

0
yaje

−ajydy =
1

aj
. (2)

Say that, on top of the mandatory heading time h between trains i and j, which has to

be respected at any time, there is a planned supplement time si,j and similarly a planned
supplement sj,i between trains j and i. Then, the probability that due to combined delays

of trains i and j, one train will delay the other is calculated by adding all cases where the

delay difference of both trains exceeds the supplement between them, weighting these cases

with the probability that they occur. This is done by integrating over a triangle area where

the delay difference x− y ≥ si,j so x ≥ y + si,j and over another where y ≥ x+ sj,i as in

px≥y+si,j (ai, aj , si,j) =
∫∞
0

∫∞
y+si,j

aie
−aix · aje−ajydxdy =

aje
−aisi,j

ai+aj
,

py≥x+si,j (ai, aj , sj,i) =
∫∞
0

∫∞
x+sj,i

aie
−aix · aje−ajydydx = aie

−ajsj,i

ai+aj
.

(3)

In the area where x < y + si,j and y < x + sj,i, si,j respectively sj,i are large enough to

absorb primary delays and avoid knock-on delays. The total expected knock-on delay of train

i on train j is calculated by multiplying, for each case where a knock-on delay occurs, its

probability, with the knock-on delay amount occurring and then integrating these products

over the same triangular integration areas as before. Via partial integration, one can prove

tKOi,j(ai, aj , si,j) =
∫∞
0

∫∞
y+si,j

aie
−aix · aje−ajy(x− y − si,j)dxdy =

aje
−aisi,j

ai(ai+aj)
,

tKOj,i(ai, aj , sj,i) =
∫∞
0

∫∞
x+sj,i

aie
−aix · aje−ajy(y − x− sj,i)dydx = aie

−ajsj,i

aj(ai+aj)
.

(4)

From equations (4), two properties can be derived. First, the larger the planned separa-

tion time si,j between the trains, the lower tKOi,j , so the lower the expected knock-on delay

on train j. Second, the lower the expected primary delay ci = 1/ai on train i, the higher ai,
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the lower tKOi,j , so the lower the expected knock-on delay on train j. These tendencies are

indeed what we expect in practice as well. Since we are interested in the knock-on delays

as passengers experience them in practice, we multiply the train knock-on delay with the

number of passengers on the knocked-on train and get

pKOi,j(ai, aj , si,j) = fj · tKOi,j = fj · aje
−aisi,j

ai(ai+aj)
,

pKOj,i(ai, aj , sj,i) = fi · tKOj,i = fi · aie
−ajsj,i

aj(ai+aj)
.

(5)

If only two trains i and j are to be planned on a common resource, in a one hour period,

what are the ideal supplement times si,j , sj,i to be planned in between them? This will

depend on their passenger numbers fi, fj and their expected delays ai and aj . First, note

that there is a relation to respect between si,j and sj,i. Indeed, the constraint for the cycle

formed by the two headway edges between trains i and j is

h+ si,j + h+ sj,i = T or equivalently sj,i = T − 2h− si,j . (6)

After substitution of T − 2h − si,j for sj,i in pKOj,i, pKOj,i is clearly a function of si,j .

Since pKOi,j and pKOj,i are both convex functions of si,j , their sum is a convex function

of si,j as well. This means the optimal spreading of two trains per time period T can be

calculated by minimising the total expected delay on all passengers of both trains as

0 = d
dsi,j

(
pKOi,j + pKOj,i

)

⇔ 0 = d
dsi,j

(
fj · aje

−aisi,j

ai(ai+aj)
+ fi · aie

−aj(T−2h−si,j)

aj(ai+aj)

)

⇔ 0 = −fj · aje
−aisi,j

ai+aj
+ fi · aie

−aj(T−2h−si,j)

ai+aj

⇔ fj · aje−aisi,j = fi · aie−aj(T−2h−si,j)

⇔ ln
(
fj ·aj
fi·ai

)
= −aj(T − 2h− si,j) + ai(si,j)

⇔ si,j =
aj(T−2h)+ln

(
fjaj
fiai

)

ai+aj

(7)

It follows from symmetry that

sj,i =
ai(T − 2h) + ln

(
fiai
fjaj

)

ai + aj
. (8)

The right hand sides of equations (7) and (8) sum up to T − 2h as equation (6) requires.

As an example, for T = 60 minutes and h = 3 minutes, a train i with an expected delay of

1/ai = 3 minutes and fi = 100 passengers on it and a train j with an expected delay of 1/aj =

1 minute and fj = 300 passengers, would be spread according to equations (7) and (8) as

si,j = 1(60−2·3)+ln(300·1/(100·1/3))
1/3+1 = 42.15 minutes and sj,i = 1/3(60−2·3)+ln(100·1/3/(300·1))

1/3+1 =

11.85 minutes and indeed as equation (6) requires 42.15 + 3 + 11.85 + 3 = 60 minutes.

This kind of balancing of supplements between trains on the same resource will be done

by our solver when we add the costs in equation (5) to the goal function. (Note that also

choices of supplements on graph edges in common cycles can affect the choice of si,j and
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sj,i and vice versa.) We take the approach of generating all knock-on costs between all train

pairs using the same infrastructure resource, irrespective of their order. This has two reasons.

First, unlike the method where we add only knock-on costs between directly subsequent

trains, this method works without relying on the yet unknown order of trains. Second,

suppose trains i, j and k follow each other in this order on a resource and train i has a large

expected primary delay 1/ai, train j has a small 1/aj but has very few people fj on it while

train k has a lot of people fk on it. Then pKOi,j and pKOj,k can be small for low si,j and low

sj,k, allowing the three trains, ordered as i, j, k, to be scheduled close together in time, even

though pKOi,k will then be large. The fact that cases where pKOi,k � pKOi,j + pKOj,k can

occur, shows that pKOi,k has to be added to capture all potential knock-on costs.

For N trains using the same resource during every timetable period T cyclically, this

method generates N · (N − 1) knock-on terms in the goal function. For each resource R, we

define the index set IR as the set of indices of trains that use R. Then, according to equation

(5), the total knock-on cost pKOR for all trains which use resource R is

∀R : pKOR =
∑

i,j∈IR
i 6=j

fj ·
aje
−aisi,j

ai(ai + aj)
. (9)

For evaluation of the knock-on cost of a given schedule or for non-linear optimisation,

equation (9) can be directly used. For a linear solver though, we need to linearise it first.

Since each of the terms in (9) is convex in the variable si,j , we can use a standard linearisa-

tion trick for convex cost functions. This entails two steps. First, for each of the terms, we

define a helper variable pKOR,i,j and impose on them

∀R : ∀i,j∈IR
i 6=j

: pKOR,i,j ≥ fj ·
aje
−aisi,j

ai(ai + aj)
. (10)

All helper variables KOR,i,j are added to the global goal function of expected passenger

time. Units match. Since we minimise our global goal function, all KOR,i,j are pushed down

so that they will be equal to instead of greater than the right hand side of equation (10).

Second, the right hand side of (10) is replaced by a number of line segments approximating

it. Here, we use 2 segments. So for each KOR,i,j term, we define three points

∀R : ∀i,j∈IR
i 6=j

:





(si,j,0, koi,j,0) = (0, fj · aj
ai(ai+aj)

)

(si,j,1, koi,j,1) = (T/15, fj · aje
−aiT/15

ai(ai+aj)
)

(si,j,2, koi,j,2) = (T, fj · aje
−aiT

ai(ai+aj)
).

(11)

The low and high end of the segments are 0 and T so that the whole supplement range

is covered. We use T/15, or 4 minutes for T equal to one hour, as the abcis of the middle

point, because, in our tests, this resulted in the closest approximation to the curve KOR,i,j

for most practical cases. Then, with these known values, equation (10) is linearised to
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∀R : ∀i,j∈IR
i 6=j

:

{
pKOR,i,j ≥ koi,j,0 +

koi,j,1−koi,j,0
si,j,1−si,j,0 · (si,j − si,j,0)

pKOR,i,j ≥ koi,j,1 +
koi,j,2−koi,j,1
si,j,2−si,j,1 · (si,j − si,j,1)

(12)

We add all pKOR,i,j as variables to our goal function and add the inequalities (12) with

the values calculated as in (11) as hard constraints to our MILP model. As such, we have ex-

tended our model with a method that accounts for knock-on delays in a way that is properly

balanced with the other goal function terms. Note that the obtained estimation of passenger

knock-on delay cost can also be used in other than timetable optimisation models. A linear

optimisation model maximising capacity consumption with the goal of capacity estimation,

as for example [Mus13], could forbid or penalise scenarios with too much knock-on delay.

3 Optimisation Results

For all 203 hourly passenger trains in Belgium, departing between 7 and 8 am in the timetable

of June 12th 2013, visiting 1770 open line track sections and calling at all 550 stations, the

macroscopic model of constraints as described in [Sel13b] has been set up. (Overtaking

is only allowed in stations with 4 or more platform tracks.) The goal function - expected

passenger time in practice - as described in [Sel13a] and now extended with the cost terms

for knock-on delays, as derived here in section 2, has been constructed. For each ride and

dwell action we assumed varying primary delay distributions with an average of a% of each

action’s minimum time. a is given in column 1 of table 1. We compare properties of the

original and optimised timetable in the next sections.

3.1 Feasibility: A Solution is Always Returned

Since our model has a goal function that properly penalises the choice of big supplements in a

soft yet passenger optimal way, there is no reason for us to add a hard constraint that restricts

supplements to any arbitrary value lower than T − δ, where δ is the time resolution of the

timetabling model. Other research groups (e.g. Delft [Spa13], e.g. Rotterdam [Kro09]) lack

a goal function that automatically restricts all supplements and so have to enforce lower

more arbitrary upper bounds as a hard constraint on their supplements. As a result they

sometimes struggle with infeasibility of their model. We believe we have resolved this issue.

3.2 Quality: The Solution has Lower Expected Passenger Time in Practice

We assume for each action, a primary delay distribution with an average of 2% of the action

minimum time. This value of a is Infrabels current best estimate for morning peak hours.

Similarly, [Gov07] also uses percentages between 0 to 5%.

Consider figure 1 and its caption. The left half of the figure shows the planned train

time total minima and total supplements, both for the oRiginal timetable (R) and for the

oPtimised timetable (P). The right half represents passenger weighted planned time for all
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Figure 1: The planned time domain. The left half shows total planned train time for all
trains. The right half show total passenger time for all passengers. In each box,
the left bargraph shows a quantity for the oRiginal timetable while the right half
shows the same quantity for the oPtimised timetable. min = sum of all minima,
sup is sum of all supplements. The sum is not weighted for train time and passen-
ger weighted for passenger time. Source corresponds to boarding passengers and
sink to alighting passengers. In this planned domain, the shading with blue lines
indicates that these actions were summed with ride actions.

origin-destination passenger streams with at least 50 people, again both for original and

optimised timetable. There are dark and light versions of some colours (e.g.: yellow, orange).

The dark colour indicates the sum of minimum times, while the lighter version indicates

the sum of supplement times. The left half of figure 1 shows a decrease of total planned

train supplements from 12.85% down to 8.89%. This train time supplement reduction is

advantageous for the operator, since, if total train trip time now becomes less than the next

lower multiple of hours, the same hourly service can be operated with one less train. [Lie07]

also gave an example of this, optimising the Berlin Underground timetable.

The right hand side of figure 1 shows that the planned passenger weighted time reduc-

tion is a much more pronounced one, from 10.40% down to 3.40% of the same ride+dwell

supplements. This is the case because they are now weighted by number of passengers.

In figure 2, instead of planned time, we show expected time, which includes primary de-

lays and their consequences like secondary delays and missed transfers. The left half again

represents train time. The right half shows passenger weighted time. The top row is the

linear approximation of time as used in the optimisation model. The bottom row shows the

actual non-linear time as it is evaluated post-optimisation. The same advantageous stronger

supplement reduction in column 2 compared to column 1 is also present in this figure. This

is the case for ride+dwell supplements but also for knock-on time. The knock-on compo-
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Figure 2: The expected time domain. Left and right are train and passenger time as in figure
1. The bottom row shows the non-linear time as used during evaluation. The top
row represents the linearised approximation of it as is used during optimisation.
So row 1, column 2 shows the totals achieved by optimisation of the goal function.
In this planned domain, blue line shading indicates these actions were convoluted
with ride actions. All figures show the case a = 2% as also reported in table 1.

nent, shown as the top (purple) rectangle of the bar graphs, is reduced in percentage of

the total expected passenger time from 4.55% in the original schedule to 2.12% in the opti-

mised schedule. This is for the linearised function as used in optimisation (column 2, row

1). For the non-linearised function (column 2, row 2), post-optimisation evaluation results

in a reduction from 4.04% to 2.60%. In both cases, in absolute terms, we more than halve

the amount of total expected passenger knock-on delay. The solver achieves this goal by
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changing orders of trains on common resources and optimally choosing headway supple-

ments, weighing with passenger numbers and also balancing these with other goal function

terms. Note that our model assumes the absence of dispatching interventions but with fewer

knock-ons happening, the number of necessary dispatching interventions will be lower than

in the original timetable as well.

The decrease of the ride+dwell and knock-on times is compensated only slightly by the

small increase in expected transfer time. In column 2, representing evaluation on all origin-

destination flows of 50 and more passengers, the total time net reduction is 8.66% (row 1,

linear) and 7.06% (row 2, non-linear). The fact that the two pictures in column 2 are quite

similar, demonstrates that our linearisation, even if only using 2 segments, is effective.

When we evaluate on all passenger streams, also the ones with fewer than 50 passengers,

the result is a less grand, but still positive 0.42% reduction (non-linear). Plotting distribu-

tions of planned passenger journey time versus number of people, we saw that distributions

corresponding to the major flows of column 2 are more realistic than the ones corresponding

to all passenger streams. None of the major passenger flows, but a minority of the smaller

ones have journey times between 2 and 3 hours for a single trip. Some of these are caused

by an overenthusiastic diffusion of the zone-OD matrix to the station level [Sel11]. These

travellers would most likely prefer other modes of transport. So we consider 7.06% to be

our best prediction for reduction of total expected passenger time. Note that an average

planned buffer of 8.89% is not enough to totally eliminate all knock-on delays, even though

the assumed primary delays have only an average of 2%, seen in train time. The non-zero

spread in the primary distribution explains this.

Table 1: Increasing primary delays, characterised by their average of a% of minimum dwell
and ride times. The first column shows a%. Column 2 and 3 show the computation
time and the MILP gap achieved. We ran Gurobi 5.5.0 on an Apple MacBook Pro
with 2.6GHz Intel i7 processor and 16GB 1.6GHz DDR3 memory. For the first set of
result rows, the gap desired was set slightly above what was obtained as the gap of
the first returned solution in earlier trials. The results in the last row are obtained
by reduction of the desired gap by 1% compared to the first row. Graph size: 203
hourly trains, 5355 ride, 5152 dwell, 17553 major transfer, 31696 knock-on and 166
turn-around edges. Model size: 42609 supplement decision variables, 49415 integer
decision variables, 41128 goal function terms for major flows and 58441 evaluation
function terms for all flows.

major major major all all missed
solver MILP flows flows flows non- flows flows non- transfer

a time gap linearised linearised linearised linearised linearised probability
ko-time time time time time orig. opt.

reduction reduction reduction reduction reduction
% min. % % % % % % % %
2 95 76.2 57 8.66 7.06 1.71 0.42 14.1 2.2
4 43 71.0 52 6.61 4.42 0.84 -1.41 14.6 4.2
6 75 61.3 63 7.65 5.73 2.07 0.13 15.1 1.8
8 66 61.3 59 5.83 3.86 0.40 -1.61 15.6 4.4
2 112 72.6 66 10.58 9.19 2.54 1.31 14.1 2.6
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As table 1 shows, compared to the current timetable, our optimised timetables have quite

some advantages. First, they respect all minimum ride- and dwell-times and all headway

time buffers of 3 minutes between all train pairs on the same track section. In the original

timetable sometimes minimum run times and headway times are not respected. Second, we

calculated that, over all primary delay assumptions of table 1, the average chance of missing

a transfer in the current timetable is at least 14.1% while in our optimised timetables it is

at most 4.4%. Depending on the primary delays assumed, in our timetables the expected

passenger times are between 7.06% and 0.42% lower than in the original schedule. This de-

crease is significant, because, of the total passenger time, the irreducible part of minimal ride

and dwell times already consumes 67% in the original and 73% in the optimised timetable.

3.3 Computation Speed: The Solution is Returned Quickly

Using the solver abstraction part of the software library milp-logic [Sel12], which we de-

veloped and open sourced, as shown in table 1, Gurobi 5.5.0 was able to return a solution

for the whole train set, for any primary delay distributions assumed, within about one hour.

This is a big improvement compared to the current manual timetabling process that takes

many human planners many months.

4 Conclusions and Further Work

This paper has three main contributions. Firstly, we analytically derived the expected pas-

senger time experienced due to knock-on delays as a function of (i) the headway minima,

(ii) the chosen headway supplements in a timetable and (iii) expected train delays and lin-

earised this function, so that it can be used for linear optimisation. Secondly, we used the

linearised functions as a method to minimise secondary delays, together with other expected

passenger time, in a system containing all hourly trains in Belgium. Our results show that

we can more than halve the amount of expected passenger knock-on delay in practice. Also,

even with addition of many terms to the goal function, optimisation times for the Belgian

timetable are only about one hour. Supposing primary delay distributions with an average

of 2% of the minimal time of their corresponding actions, our improved timetable reduced

expected passenger time for realistic passenger streams by 7.06% compared to the current

one. Finally, although restricting the search space and using curtailed goal functions are

the easy way to try to reduce solver time, we show that defining an all-encompassing goal

function and searching the full solution space can lead to more desirable results: guaranteed

feasibility, optimality and even lower solver times.

As for further work, we want to reduce our MILP gap, refine our minimum transfer time

differentiating it by station and calibrate our primary delay distributions with train and loca-

tion specific delays measured in practice. Also, instead of the frequency-arc hard constraint

approach [Spa13], we want to add terms to the goal function that are due to uneven spread-
ing over the timetable period of alternative trains between the same source and destination.
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2.4 Reducing the Passenger Travel Time in Prac-
tice by the Automated Construction of a
Robust Railway Timetable

Full paper in press for Journal: Transportation Research, Part B: Methodological,
2015

“To arrive on time, one has to depart on time.”

– Jo Cornu, CEO of NMBS, the Belgian main train operator

“To depart on time, one has to arrive on time.”

– Peter Sels, CEO of Logically Yours

The following paper derives and discusses the constraints of our cyclic
timetabling model. It is a model based on the Periodic Event Scheduling
Problem (PESP) formulation as first described by [41]. The implementation is a
Mixed Integer Linear Programming (MILP) system of equations and inequalities.
There are two sets of constraints. The first set is mandatory, in the sense that
they are all needed to generate timetable solutions where trains do not collide
on the same track and even leave a time of three minutes between each other.
The second set of constraints, we call optional, because they are only needed to
decrease model resolution time. This set of optional constraints is the result of
many experiments we performed and selecting the ones that give results in the
shortest time. All constraints are mathematically derived.

The objective function is the total expected passenger travel time in practice as
described before in sections 2.2 and 2.3. This objective is of course minimised.
The model instance generated is one for all 196 hourly passenger trains in
Belgium. After 2 hours of computation, we get the optimised timetable. We
then evaluate the original and optimised timetable over all passenger streams
and get the following results. Assuming 2% of the minimum times of ride,
dwell and transfers for the average of the negative exponential primary delays
distributions on these activities, this optimised timetable reduces the expected
passenger time by 3.81% compared to the original timetable made manually at
Infrabel. Under the same primary delay assumptions, the average probability of
a missed transfer per passenger goes down from 13.9% in the original timetable

http://www.LogicallyYours.com/TRB2015.pdf
http://www.LogicallyYours.com/TRB2015.pdf


REDUCING THE PASSENGER TRAVEL TIME IN PRACTICE BY THE AUTOMATED CONSTRUCTION
OF A ROBUST RAILWAY TIMETABLE 77

to 2.6% in the optimised timetable. Surprisingly, the total time spent in transfers
in practice is smaller in the original timetable, even though less transfers are
missed and the total journey time is smaller in the optimised timetable.

Macroscopic simulations for all 196 passenger trains in Belgium, repeated hourly
for 5 consecutive hours, for both the original and the optimised timetable are
performed with the simulator OnTime. If we let OnTime report the number
of stations where at least 50% of trains are on time, we see the the there are
more such stations in the optimised timetable than in the original timetable.
This remains true if we raise the requirement from 50% to 80% and 90% of
trains having to be on time. This confirms that the optimised timetable is more
robust against the same primary delay distributions than the original, manually
constructed one.

Microscopic simulations of the Belgian bottleneck, the Brussels North-South
axis, are also performed in order to verify the feasibility and punctuality. These
show that the optimised timetable, also in this critical area, is feasible and,
subject to the same primary delay distributions, shows less knock-on delay than
the original timetable. Indeed, the ratio of realised versus planned time is 1.6
for the original but only 1.25 for the optimised timetable.

The excess journey time, being the time that passengers wait for their first
train at the station of departure plus the time they wait at their station of
arrival for the next mode of transport, is not included in the objective function.
So one may wonder if bunching of trains occurs in the optimised timetable.
Otherwise put, how good or bad is the temporal spreading over the hour of
alternative trains between important stations? We evaluate spreading in terms
of excess journey time on the 11 corridors between neighbouring main stations in
Belgium. This evaluation shows that the sum of journey time and excess journey
time for all these corridors together, weighted by their number of passengers
is significantly lower in the optimised timetable than in the original one. It is
known that human timetablers spend quite some effort on realising spreading of
alternative trains. They do this by, for example, spreading 3 alternative trains
by 20 minutes plus or minus just a few minutes. However, these alternative
trains may not stop in the same amount of stations, or they may even contain
material with different performance characteristics. The result is that the train
that would ride the fastest if it was optimally planned when considering only
itself and not the other trains, is now planned as slow as the other slower trains.
So it gets ’over-stretched’. In our optimised timetable, the journey time and
excess journey time are both considered together, properly weighted by the
applicable amount of passengers and the perfect trade-off can be made. This
causes reduction of this total time on these 11 major corridors from 4.2%, if
all passengers can or will not adapt their arrival time to the timetable and
15.6% if all passengers arrive just before the train they want to take. It can be
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concluded that in the original timetable, for these corridors, too much attention
goes to temporal spreading, creating a negative over-stretching effect, and a net
increase of expected passenger time. Even though we have not added the excess
journey time into our objective function, our optimised timetable performs
better. This must be the case because journey time is present in the objective
function and is relatively much more important than excess journey time. Apart
from evaluation, one could also optimise for total expected passenger time that
includes the excess journey time. This is the topic of the paper in section 2.6.

We conclude that our timetabling method generates an optimised timetable
that is better for passengers on many levels. So, we think our method and the
generated timetables deserves the attention of railway companies.

Since the publication of this paper, we received some further comments and we
want to respond to these here.

The paper mentions that our model is a PESP (Periodic Event Scheduling
Problem). This is correct in the broad sense in that it models a problem that
contains events that will occur periodically. However the strict interpretation -
or one could say traditional formulation - of PESP is that the main variables
represent the process durations and are modelled on edges of the event activity
graph and integer variables are either zero or one. This is described in more
detail in the paper by equation (1) and the corresponding text in section 1. Our
model uses variables on both edges and vertices. The vertex variables represent
absolute time instead of time modulo T, the timetable period. In doing so, we
only have to model integer variables on primary edges. We provide an integer
variable on each secondary edge, connecting vertices belonging to different trains
and these integers can take other values besides 0 and 1. Whether this is a
more complex or simpler way to model a PESP system can be debated. The
fact is that our model can solve very large networks, up to networks of entire
countries, even if we include an objective function that contains supplement
variables relating to all edges in the graph. This has never been demonstrated
with the traditional PESP models before.

For the case of Belgium, Infrabel told us to not take into account any freight
trains. (For the case of Denmark, we took into account 4 freight trains, because
Banedanmark thought they were important in a specific corridor.) In Belgium,
freight trains are currently scheduled in between the planned passenger trains
at a later stage. In our research for Belgium, in the original timetable as
well, freight trains were removed. So when comparing the original and the
optimised timetable, the same train set is compared. However, some unfairness
may arise since, for example, in the original timetable two passenger trains
may be separated with 6 minutes, allowing for a freight train to be planned in
between, whereas the optimised timetable may have the freedom to separate
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the passenger trains with less than 6 minutes as well, but this would not allow
insertion of a freight train in between. However, in Belgium, freight trains do
not typically occur during peak times on the busiest passenger train corridors.
Also, outside peak hours, ‘peak time passenger trains’ are dropped from the
timetable and these time slots then become free for use by freight trains outside
peak hours. However, it would be better to also plan freight trains at the
same time with passenger trains, if all freight train paths are already known.
In our later work for Banedanmark, we model a freight train as a passenger
train with zero passengers. Naturally, our passenger reflowing does not assign
any passenger to any freight train. During retiming, the weight of each freight
train is set to 0 passengers. This makes freight trains to have a lower priority
compared to passenger trains, which is also the case in reality.

The paper mentions that the motivation of using integer variables for arrival
and departure times is probably that railway companies require these times to
be integer minutes. The reason is that traffic control cannot deal with a higher
precision.

The paper mentions that we use all constraints of the traditional PESP models.
This is true but the upper bounds are larger in our model. This is explained in
detail in the paper elsewhere.

The paper mentions that [24] was able to generate timetables for relatively large
networks but in fact the networks considered were only small.

The paper sometimes uses the term ‘microscopic’ planning to mean ‘in station’
planning, or the train platforming problem (TPP) handling both platforming
and routing. However, both macroscopic and microscopic approaches to the
TPP exist in the literature. A microscopic approach models at the level of
signals and block sections. A macroscopic approach models at a higher level
that may ignore some of these details.

In our model, as described in the paper, the minimal headway time is set to 3
minutes. In fact, for trains on the same track in opposite directions, Infrabel
uses a minimum headway of 6 seconds. This means our solutions are still valid
but allowing this lower minimum would allow a somewhat bigger search space
and possibly an even better solution.

The paper did not mention that time distance graphs for all lines and for both
the original and the optimised timetable are automatically generated in PDF
format. The graphs for the optimised timetable contain no violation of the
macroscopic 3 minute minimum headway rule. The original timetable contained
several violations against this rule (not counting the opposite trains on the same
track).
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Note that the paper implicitly assumes that the minimum ride, dwell and
transfer times me are smaller than the timetable period T , so ∀e ∈ E : me < T .
In Belgium this is certainly the case since the maximum value for me in the
whole network is 13 minutes, compared to a period T of 60 minutes. This
means that, since the remaining slack range of the supplement is between 0 and
T −me, there is sufficient margin to deliver high robustness for any activity
in the Belgian network.. This supports the validity of equation (4) and the
effectiveness of for example equation (11) in the paper. Note that any network
can be adapted to satisfy the condition me < T by inserting a supplementary
‘virtual’ timetable point wherever me ≥ T . Also, by taking the same measure
for any activity where me > 0.9 · T , our model has sufficient slack to choose a
proper supplement time and can as such effectively strive for robustness on that
activity.

As for our main conclusions about the reduction percentage of 3.8% of expected
passenger time, the more robust transfers and the higher train punctuality, one
can raise the important question if there is any possible unfairness in comparison
between the manually constructed timetable and the optimised one. Unfairness
can arise when one timetable is more constrained that the other. This is only
the case for where we do not add freight trains and for where we do not add
regularity constraints nor symmetry constraints. However, we explain in the
paper that there are few freight trains on busy corridors and that regularity
constraints are overly strict and that not enforcing them delivers better results
in terms of total expected passenger time, including excess journey time, on as
least the 11 main corridors. We als explain that symmetry constraints are not
beneficial for the minimisation of expected passenger time.

A related but different question is whether our new timetable is fair with respect
to reality. Input data, is imperfect and could potentially cause our conclusions
to be different when real data is used or equivalently when our timetable would
be put into practice. Of course, wherever possible, we used data that reflects
reality as good as possible. However, there is uncertainty of primary delays, of
the degree of transfer penalisation of passengers or passenger categories, the
amount of passengers that adapt their arrival time at their departure station to
the departure time of their train. For some, but not all of these a sensitivity
analysis has been made.

Input data that only approximates reality can also form a bias that favours one
timetable over the other. The assumed transfer penalty of 15 minutes in both
timetables leads to good transfer times for the original timetable compared
to for the optimised timetable. The OD input data and method of diffusing
zone OD to the station OD uses uncertain input data and generates many
very small passenger streams that are uncertain to also occur in reality. Our
automatic timetable suffers from that as seen by its non-ability to also produce
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low transfer times for these very small streams. If realistic - so fewer and larger
- passenger streams would be available it is likely that our optimised timetable
would produce even better results.

Decidedly, no timetable for Belgium was constructed with more actual electronic
sources of data than the one described here since we considered an OD matrix,
all possible passenger transfers and a stochastic description of primary delays.
Also, there has of course been no intentional bias to favour the automatically
generated timetable.
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a b s t r a c t

Automatically generating timetables has been an active research area for some time, but

the application of this research in practice has been limited. We believe this is due to

two reasons. Firstly, some of the models in the literature impose artificial upper bounds

on time supplements. This causes a high risk of generating infeasibilities. Secondly, some

models that leave out these upper bounds often generate solutions that contain some very

large time supplements because these supplements are not penalised in the objective func-

tion. The reason is that these objective functions often do not completely correspond to the

true goal of a timetable. We solve both problems by minimising our objective function: to-

tal passenger travel time, expected in practice. Since this function evaluates and indirectly

steers all time related decision variables in the system, we do not need to further restrict

the ranges of any of these variables. As a result, our model does not suffer from infeasibil-

ities generated by such artificial upper bounds for supplements.

Furthermore, some measures are taken to significantly speed up the solver times of our

model. These combined features result in our model being solved more quickly than pre-

vious models. As a result, our method can be used for timetabling in practice. We demon-

strate our claims by optimising, in about two hours only, the timetable of all 196 hourly

passenger trains in Belgium. Assuming primary delay-distributions with an average of 2%

on the minima of each activity, the optimised timetable reduces expected passenger time

in practice, as evaluated on the macroscopic level, by 3.8% during peak hours. This paper

demonstrates that we added two important missing steps to make cyclic timetabling for

passengers really useable in practice: (i) the addition of the objective function of expected

passenger time in practice and (ii) the reduction of computation time by addition of well

chosen additional constraints.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and literature comparison

In railway operations, the construction of a train timetable, on the highest level of abstraction, means the determina-

tion of the arrival and departure times for each train in the system, in each station it serves or passes. This is a large
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combinatorial optimisation problem with, for example, 165,000 constraints and about 200,000 variables for the Belgian net-

work of hourly passenger trains. It requires hours rather than minutes to solve. Many constraints should be respected. For

example, minimum ride and dwell times should not be violated, two trains on the same infrastructure resource should

be separated by some minimum time and passenger transfers should be assigned neither too much nor too little time. In

this section, we introduce our timetabling approach and compare it with the approaches available from the literature. We

take the approach of presenting in the order that research expanded. This is usually also the chronological order but some

exceptions occur.

1.1. The objective of a timetable

Watson (2008) reports the story of the ’disaster timetable’ that was set up in the United Kingdom after the government

required in 1993 that train operator companies and the railway company, back then called Railtrack, operate separately.

Since the European Community imposed a similar measure on train companies in all its member states in 2005, this story

has a wider relevance. Watson (2008) concludes that ‘The total train planning problem was no longer any one organisation’s re-

sponsibility and, hence, inevitably, Railtrack concentrated on efficient network utilisation and train operators on efficient resource

utilisation.’ As an example, Watson (2008) mentions that no stakeholder was interested in the synergetic network effects of

properly planning the transfers between service lines of different operators. He suggests to resolve these problems by set-

ting a clear objective for the whole timetable. Additionally, software should be developed to support shorter train timetable

development iterations. We address both remedies in this paper. We believe that setting this objective to passenger service,

for example by minimising the expected passenger time, will benefit passengers. Consequently, this increased experienced

customer value will trickle down along the value chain from the passengers, to the train operator companies to the infras-

tructure company. This paper makes clear how this objective is used in both quick, automatic optimisation and evaluation

of timetables.

So our objective is to design a timetable in an automated way. The main characteristic of this timetable should be that the

passenger travel time in practice, for all passengers together, is as low as possible. We take into account small train delays,

occurring on a daily basis in the current timetable. We suppose fixed minimum times for ride, dwell, transfer and turn-

around activities and only determine and add supplements on top of these. According to our objective, these supplements

should be large enough to compensate for typical delays, but the supplements should also not be too large in order to

avoid needless extra waiting or travel time for the passengers. Since we focus on timetabling, we do not consider other

measures that could improve the robustness or performance of the railway system such as network design, line design,

halting pattern nor dispatching rules. We successfully apply our optimisation method to the network of all passenger trains

in Belgium. However, our method is generally suited for quick, automated generation of robust, cyclic timetables for any

passenger transport network.

1.2. Efficiency and robustness of a timetable

In their timetabling overview paper, Cacchiani and Toth (2012) make a distinction between nominal timetabling and

robust timetabling methods. For the first, they indicate that objective functions vary between minimising the number of

changes with respect to a preferred timetable, maximising customer satisfaction by minimising (planned) passenger time

and minimising cost for the railway company. For robust timetabling, they describe that there is a trade-off between

efficiency, the nominal objective - if one focusses on passenger or train travel time - and robustness. They mean that both

cannot be optimal at the same time. Put otherwise, there is a cost of robustness. To the same effect, Schöbel and Kratz

(2009) propose a pareto optimisation technique with these two separate criteria. Similarly, Cacchiani et al. (2012) aim for

an efficient timetable via the objective function and add a Lagrangian heuristic to it to obtain some robustness. They state

that the end user is responsible to make the trade-off between efficiency and robustness. We see this differently. A better

solution to this apparent dilemma is to take expected passenger time in practice as the stochastic objective function of the

timetable. It is clear that both efficiency and robustness have an effect on expected passenger time in practice but if one also

carefully models both the effects on this objective function via a stochastic model of expected primary delays, the objective

function will make this tradeoff. This total objective function was used in Sels et al. (2011a) and is also used in this paper.

Dewilde et al. (2014) also proposed this same objective function as the preferred approach to strike the right balance be-

tween efficiency and robustness in a timetable. Supplements will not be so small that the smallest primary delay cannot

be absorbed. Likewise supplements will not be so large that the journey times become inefficiently large for passengers.

In the timetables produced by our model, these two positive properties are merely the automatic result of minimising the

expected passenger time in practice.

Kroon et al. (2006) focus on improving a timetable that is being used in practice, assuming that train orders have to

remain fixed. This means that actual realisations that are obtained from logged train times are relevant. In The Netherlands,

the type and granularity of the train logging measurement points in the infrastructure allows separation of primary and

secondary delays from these logs (Daamen et al., 2009; Goverde and Hansen, 2000). Kroon et al. (2006) then perform a

post-optimisation of arrival and departure times so that the average (primary plus secondary) delay is minimal with respect

to the primary delay distributions which historically occurred for the considered trains. They call this a mixed simulation-

optimisation approach. (Liebchen et al. (2009) call this a two-stage stochastic optimisation.) This method was applied on a
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corridor called ‘the Zaanlijn’ and the resulting timetable was put in practice. This experiment confirmed the results expected

from theory. In practice, the optimised timetable proved to be more robust against small primary delays. The work in Kroon

et al. (2006) is intended to improve an existing timetable already in operation, while our methodology intends to construct

timetables from scratch. Because of this, our method differs in two aspects. Firstly, this means that we still must determine

train orders. We also choose to determine all time supplements at the same time since these are interdependent with train

orders. Secondly, our model estimates secondary delays as a function of chosen train orders and time supplements when a

given set of primary delays is assumed. As such, it determines the best train order and time supplements between trains.

These supplements are also the essential variables to be determined in the queuing model of Wendler (2007).

Apart from robustness, a further possible requirement for timetables is the criterion of resilience, meaning that, after a

perturbation, the timetable is able to evolve back to the original one instead of diverging from it, and preferably must do so

quickly. Semet and Schoenauer (2005) tackle this via an evolutionary algorithm.

Resilience is very close to recoverable robustness, which is defined by Liebchen et al. (2009). This technique requires that

for every likely input scenario of a running train, including primary delays, that the timetable is able to recover from it.

They state that two-stage stochastic optimisation is not able yet to produce, from scratch, robust timetables for instances of

the size of an entire country. However, in our current paper, we show that with our PESP based model which includes a

stochastic objective function, this can be done in a practical computation time. This is probably because we do not use the

explicit scenarios present in two-stage stochastic optimisation, which naturally make the linear program model very large,

but rather assume independent primary delay distributions on every activity in the graph. Note that this assumption covers

a very broad range of scenarios of likely ‘input’ train runs, be it implicitly. It also delivers a simpler model. Our requirement

is then that the negative influence of disturbances, weighted with the probability that they occur, on expected passenger

time in practice is minimal. Liebchen et al. (2009) further present a case study of recoverable robust train platforming, but

not on timetabling.

Fischetti and Monaci (2009), propose a technique called light robustness. It couples robust optimisation with a simplified

two-stage stochastic programming and sometimes achieves results of comparable quality to stochastic or robust modelling

while requiring lower modelling and computational efforts.

For a more complete overview of robustness definitions, we refer to Dewilde et al. (2011). They mention that passengers

prefer a timetable which implies minimal expected passenger time under expected primary delays. The authors further

demonstrate that this objective results in an amount of robustness that is ideal for passengers. By choosing this objective

function, the authors follow and support the recent trend in passenger railway research to give a higher weight to the

concerns of the passengers. We use the same objective function in this paper.

1.3. The Periodic Event Scheduling Problem (PESP) approach

Cyclic timetabling formulated in the PESP way has been studied by, amongst others, Serafini and Ukovich (1989);

Schrijver and Steenbeek (1993); Odijk (1996); Nachtigall (1994); Goverde (1998a, 1999); Peeters (2003); Liebchen (2006,

2007); Kroon et al. (2007, 2009) and Schöbel and Kratz (2009).

In PESP, an event activity graph G(V, E) consisting of the event set V and the activity set or edge set E is set up. Events

are arrival and departure times of trains at stations and represent the vertices of the graph G while edges are train activ-

ities (ride, dwell or turn-around) or passenger activities (transfer) or just represent separation constraints between events

(headway-times). For a timetable with cyclic period T and model time resolution δ, the general vertex and edge constraints

over the graph G(V, E) as adapted from Sparing et al. (2013) are

∀(i, j) ∈ E : wi, j = x j − xi + zi, j · T,

∀i ∈ V : 0 ≤ xi ≤ T − δ,
∀(i, j) ∈ E : 0 ≤ wi, j ≤ T − δ,

(1)

where xi, xj are cyclic begin and end times – to be considered as the minutes after the hour if T equals one hour –wi, j is

the duration chosen for the activity (i, j), zi, j is an integer, either 0 or 1, and when it is 1, it represents an overflow over the

period T in the cyclic timetabling model. Each activity duration wi, j is subject to a lower bound li and an upper bound ui.

Our model deviates from this traditional approach in a number of ways. Firstly, we do not constrain our train departure

and arrival times (xi in Eq. (1)) to be between 0 and T − δ, but rather between a start hour (e.g.: 6 a.m.) and end time

(e.g.:11 a.m.). This has the direct advantage that for the planning of all ride and dwell activities, no single integer variable is

necessary. Integer variables are what makes large MILP models hard to solve. But as a consequence, secondly, for inter-train

edges, like transfers, turn-around and headway edges, we will need integer variables and the ranges of these variables will

often even be larger than the (0, 1) range of the zi, j variables here. However, we take measures to restrict these ranges.

Thirdly, our variables corresponding to supplements on activities are all continuous, while many other publications describe

PESP models where those supplements are integer variables (Großmann, 2011; Liebchen, 2006; Nachtigall, 1996; Peeters,

2003; Schrijver and Steenbeek, 1993). Often these variables have a resolution of 1 min. The motivation for using integer

variables is probably that the published timetable is traditionally required by the railway companies to have integer minutes.

Note that the models formulated as a Satisfiability (SAT) problem (Großmann, 2011; Kümmling et al., 2013) are essentially

always integer variable models. We take the approach of calculating a timetable in the highest time resolution possible

for internal use. For publication purposes to passengers, train arrival times can be rounded up to the minute level and train
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departure times can be rounded down to the minute level. The fourth difference of our PESP model compared to most other

PESP models is that we restrict any supplement s only by s < T while previous PESP models almost always use a constraint

s < x, where x represents some small and relatively arbitrary amount of minutes like 2–10 or so. We can do without these

arbitrary upper bounds thanks to our objective function which prevents very large supplements. This avoids any risk of

creating infeasibilities due to upper bounds that are too tight. We give a proof of this in Appendix A. Lastly, we also include

all of the PESP constraints included in the traditional PESP models, except for the frequency edges and associated regularity

constraints that spread alternative trains evenly over the timetable period. So, equally spreading of alternative trains is not

considered in our model yet. We explain in Section 7.4 why we prefer not to add these regularity constraints. However, we

do evaluate the amount of temporal spreading of alternative trains in the original and generated timetable and compare

these.

Serafini and Ukovich (1989) wrote the seminal paper on the PESP model defining the problem as the scheduling of pe-

riodically recurring events, which leads to cyclic time-window constraints. By their disjunctive nature – due to the two

possible values of zi, j in Eq. (1) – the constraints may cause the exponential growth of the computational complexity of

the problem, depending on its size. Schrijver and Steenbeek (1993) were the first to apply PESP to the Dutch railway sys-

tem. They used a constraint programming approach without an objective function. Their efforts resulted in the DONS and

CADANS systems which today are still used at the Dutch principal passenger train operator company, NS (Nederlandse Spoor-

wegen). Odijk (1996) first described the generation of constraints based on cycles in the PESP graph, which can lower solver

times. The helpfulness depends on the selection of the cycle set (Odijk, 1996; Peeters, 2003). With his model, Odijk (1996)

demonstrated that PESP allows to generate timetables for relatively large networks, like The Netherlands.

Goverde (1998a, 1999) studied scheduling of optimal connections between trains, making the trade-off between the

effects of too little and too much planned time for a transfer under the occurrence of delays. Goverde (1999) defines

timetabling as the optimisation problem with decision variables being buffer times located on edges, rather than decision

variables being train arrival and departure times, located on the vertices. This reduces the number of model variables. We

define decision variables on both edges and vertices. Of course, we add constraints where these variables are related. Defin-

ing vertex variables allows a user to impose absolute times, for example for an international train arriving or departing at

boundaries of the network considered.

Peeters (2003) discusses many possibilities of cycle bases in what is called the Cycle Periodicity Formulation (CPF) of PESP.

Up to now, none is proven to be the optimal set to reduce solver times and some cycle bases also take quite some time to

be computed. We define and quickly calculate our own cycle sets. One cycle set is defined by the transfer activities where

sufficient transfer passengers are present. Other sets are selected because their cycles have few edges and so induce simple

constraints between only a few integer variables. We select the combination of cycle sets that reduces solver time the most

for our experiments. More details are discussed in Section 5.

Minimisation of dwell times has been used as the objective function by Lie (2006). He reports that some solutions have

ride activity supplements that are very large. To avoid this and similar problems, our objective function contains expected

passenger time terms corresponding to all activities that cause it: ride, dwell and transfer. Realising that a timetable needs

to be robust against primary delays, an objective function based on stochastic delay distributions was investigated by Kroon

et al. (2007). Improvement of the service for passengers has been reported by Vansteenwegen and Van Oudheusden (2006)

and the minimisation of waiting time using linear programming has been studied by Vansteenwegen and Van Oudheusden

(2007).

Liebchen (2007) produced the first cyclic timetable generated by optimisation that has also been put into practice. It

concerns the Berlin Underground with 37 trains. Liebchen (2007) reports the snag of very large supplements for transfers

that are not considered in his model, and so, do not occur in the objective function. However, these transfers are taken

by some transferring passengers and their expected transfer time may be too high. To avoid this problem, the expected

duration of all transfers should be present in the objective function, weighted by the number of people expected to take

them. In our approach, we define a potential transfer whenever two trains stop in the same station, irrespective of their

still unknown arrival and departure time and irrespective of the number of passengers we expect to take this transfer. The

expected passenger travel time of all potential transfers is included in our objective function.

Sparing et al. (2013) report that ‘The complete optimisation of a railway timetable of realistic size is an extraordinarily

large mathematical problem. Some instances or similar subproblems of the timetable optimisation have been successfully

solved before.’ Here, the word subproblem means only considering a subset of trains of a network, or/and only considering

a subspace of the full search space. An example of the latter is due to Kroon et al. (2009) who reported on a tool set that

generated 20 different feasible solutions for the PESP problem for all Dutch periodic passenger trains. These solutions were

feasible, not optimal, since no objective function was defined. Their system can find feasible solutions if they exist under

the given initial parameters, indicating a subspace of the full search space. If no solutions exist, the system lists the critical

constraints that cannot be met. Since, for a user, it is hard to be confronted with constraints and even harder to impossible

to fix infeasibility among them, we want to build a system that guarantees to deliver a solution. Our objective function will

automatically, but in a soft way, limit the length of the time supplements added to the timetable. Therefore, unlike most

other research, we do not need any hard constraints that formulate hard upper bounds on the supplements to constrain the

search space. We use large ranges for supplements which, unlike other research, makes that our model covers the whole

solution space. Because of this, we see no reason why our model, for some problem instance and if enough solver time is
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allowed, would not find a solution if one exists. Practice confirms this, since for all our experiments in the last years, no

single model was reported to be infeasible by the solver. This is a huge advantage in practice.

For more information on the above models we refer to the publications themselves and to Cacchiani and Toth (2012) for

a comparison of the different constraints and objective functions between models in a common notation.

1.4. Other macroscopic approaches

Huisman et al. (2005) and Caimi et al. (2009) categorise the common approaches of train timetabling into two streams,

the first one being a macroscopic approach where one abstracts from the detailed track topology and only determines train

arrival and departure time per station. Within this stream, the mentioned Periodic Event Scheduling Problem (PESP) is the

most common, but there are other macroscopic approaches. For the timetables produced by macroscopic models, naturally,

feasibility on the microscopic level is not guaranteed. Microscopic models solve this issue, but typically cannot yet produce

a timetable for a whole country. In this section we discuss some of these other macroscopic approaches and in the next

section microscopic approaches are discussed.

Nachtigall (1996), early on, constructed an approach to tackle systems with vehicles that are to be planned with differ-

ent frequencies. Galli and Stiller (2010) also propose a method for such systems, claiming that traditional PESP methods

are underperforming for these. Nachtigall and Voget (1997) introduced an objective function equal to the minimisation of

waiting times and obtained schedules with a genetic algorithm. A different approach to macroscopic timetabling other than

PESP is taken in Nachtigall and Opitz (2008), by using modulo simplex calculations. This publication presents an example

application for 92 trains in Germany with periods of 20, 30, 60 and 120 min and considering 570 of the 1200 transfers that

was solved in 20 min. However, in this paper, we show that it is paramount to evaluate over all transfers to know the real

value of a timetable.

Burdett and Kozan (2010) use a job shop scheduling inspired technique to successfully schedule trains on sections and

crossing loops. Their examples go up to the size of 55 sections, 52 crossing loops and 54 trains and calculation times stay

below 8 min. Liu and Kozan (2011) extend this work to also allow scheduling for a mix of high- and low-priority trains,

where high-priority trains are required to run without waiting. The method of this paper achieves a similar goal without

having to resort to different train categories, by weighing time supplements by the number of passengers that experience it.

Großmann (2011) proved that PESP can be polynomially reduced to the satisfiability problem (SAT). Großmann et al. (2012)

and Kümmling et al. (2013) then used a satisfiability (SAT) solver instead of an integer linear programming (ILP) solver to

solve PESP models, with satisfying results for large networks, like the high speed train network in Germany.

1.5. Microscopic and decomposing approaches

The microscopic stream of approaches concentrates on checking (Bourachot, 1986; Carey and Carville, 2003) or construct-

ing (Caimi et al., 2011; 2004; Zwaneveld et al., 1996) microscopically feasible timetables. This means that for the occupancy

of subsequent tracks for each train, a blocking time stairway is constructed and overlaps between any stairways are checked

or are guaranteed to not occur. At this level, signals as well as train properties like, length, available acceleration and decel-

eration and weight are also considered in the timing calculations. Likewise, track properties like length and curvature are

taken into account. Before putting a timetable into practice, the property of conflict freeness should be checked at this level.

One can suppose that macroscopic timetabling has been performed and then use the generated train arrival and depar-

ture times in a station to generate a platforming and routing plan for as many trains as possible without changing these

times. Fixing these times, has the advantage that the macroscopic problem of timetabling and the microscopic problem of

platforming and routing in stations can be decoupled (Sels et al., 2014). However, sometimes this can result in some trains

not being able to be platformed or routed while in some cases this would be possible if these times would also be allowed

to change. The microscopic models of Caprara et al. (2011a) and Caimi et al. (2011) also allow some limited shifts in arrival

and departure times. When even within these allowed time shift windows, some trains cannot be scheduled, they hint at

the importance of providing feedback to the macroscopic level that describes that arrival or departure times of these trains

should be changed.

De Fabris et al. (2013) use a heuristic and model at the mesoscopic level to obtain timetables that are quickly computed,

yet quite accurate. They do not check the resulting timetable for microscopic feasibility yet. Schlechte et al. (2011) construct

a microscopic graph starting from routes in a station and then aggregate this graph into a macroscopic graph. They present

an example of the Simplon pass train corridor which, in one micro-to-macro iteration happens to deliver a microscopic and

macroscopically feasible timetable. Based on algorithms published in Cacchiani et al. (2010) and earlier work in Bešinović

et al. (2013, 2015) extend the work of Schlechte et al. (2011) by also providing a de-aggregation algorithm from macro to

micro. They also iterate between micro-level (obtaining a microscopically feasible timetable) and macro-level (obtaining a

timetable satisfying a macroscopic objective function). They obtain a timetable which has some degree of robustness via the

requirement that capacity consumption does not exceed the norms dictated by the UIC 406 leaflet (UIC, 2004). When this

normative capacity consumption is exceeded, some trains are automatically cancelled. The practical value of the approach

is demonstrated on a case study for the corridor Utrecht–Eindhoven in The Netherlands which contains 7 stations and 40

hourly trains pass or stop in these stations. A microscopically feasible and macroscopically robust timetable was reached in

20 min in 9 micro–macro iterations. No trains had to be cancelled since maximum capacity consumption in this corridor
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of 54.7% is below the 75% recommended by UIC. Compared to our approach in this paper, the method of Bešinović et al.

(2015) has the advantage that accurate modelling of microscopic details is present which achieves microscopic feasibility.

Our method has the advantage that we obtain a timetable for a whole country with 5 times more trains. Also, in our

approach to robustness, we achieve optimal robustness for passengers, whereas Bešinović et al. (2015) follow the more

crude robustness norm of UIC 406. Operators may sometimes insist on scheduling more trains than is recommended by this

norm and the operator’s question is then how to schedule the full set with minimal expected interactions between train

pairs. To solve this, we think that advantages of the microscopic method of Bešinović et al. (2015) and our macroscopic

method in this paper could possibly be combined by adopting our expected passenger time function as objective function

for the macroscopic part of the model of Bešinović et al. (2015).

Some authors decompose the problem of generating a microscopically feasible timetable for a whole country into sub-

problems. Caimi et al. (2009) differentiate between condensation zones which are large complex stations where train frequen-

cies are high and compensation zones which have simple topologies and lower train frequencies. In condensation zones, a

timetable can be independently constructed from the rest of the network. In the compensation zones, timetables are stitched

together since they judge that in in these zones, more slack can be added. Caimi (2009) reports how the mentioned slack in

compensation zones is determined and how the separately constructed timetables of condensation and compensation zones

can be integrated. Any decomposing method can of course not guarantee to generate a timetable that is fully optimal on the

global level. In this paper we do not decompose our network but strive for an optimal macroscopic timetable for a complete

national network at once.

1.6. Timetabling approach and features comparison

We summarise the differences in approach and features of the publications mentioned in the previous Sections 1.2–1.5

in Table 1. Note that feasibility under the macro section is usually only with respect to calculated minimum runtimes and

given minimum dwell times and macroscopic minimum headway times which are usually set to 3 min. It does not include

conflict-freeness with respect to microscopically calculated minimum headways nor does it guarantee that there will not be

capacity issues inside stations. What becomes obvious from this table is that research on macroscopic models report a higher

number of trains than microscopic models. Also, macroscopic models tend to have more evolved objective functions than

microscopic models. Microscopic models produce solutions that respect the microscopically calculated headway constraints

and station capacity limits and are thus truly conflict free. Micro–macro models try to combine benefits of both approaches.

All models have their specific merits and disadvantages.

1.7. Paper overview

In Section 2, prior to describing our model, we discuss our assumptions about the input data and what is variable versus

fixed. Section 3 refers to our previously published objective function, passenger travel time expected in practice, and to our

earlier work on deriving passenger flows. These flows are required since we want to minimise passenger travel time. In

Section 4, we describe the mandatory constraints of our PESP Mixed Integer Programming Problem (MILP) model and in

Section 5 we present our cycle set and related constraints which decrease solver time. Section 6 summarises the model in

a few tables. In Section 7, we show that our constraints avoid infeasibility issues and that our MILP model, applied to all

passenger trains in Belgium, results in a significantly better timetable for passengers, after only two hours of solver time.

Section 9 concludes and mentions possible further work.

2. Assumptions

Before presenting our model, this section explains the general assumptions made in this paper. The distribution of the

passenger demand in space is supposed to be known and available in an Origin–Destination (OD) matrix. This matrix is

derived from seasonal ticket sales. Since this represents around 80% of all trips, this data can be considered as average

demand. This also means that it is not representing any specific peak hour but rather the peak hours together as a whole.

As in many European countries (Austria, Denmark, Germany, Great-Britain, Norway, Switzerland, and The Netherlands)

(Peeters, 2003), the Belgian railway operator requires a cyclic timetable with a period of one hour. Larger countries typically

also run some longer distance trains with lower frequencies. A reason sometimes given for cyclic timetabling, as in Peeters

(2003) and Cacchiani and Toth (2012), is that cyclic timetables are constructed so as to make it easy for passengers to

remember the train departure times. A stronger motivation is that a cyclic timetable is more compact and also simplifies the

material handling and crew rostering planning problems. Acyclic timetables are described by Ford and Haydock (1992) and

are also called market-led timetables because these are more adapted to variation in passenger demand between different

hours or days. In cyclic timetables, this flow variation is typically accommodated for by adding some morning peak specific

and evening peak specific trains that are essentially each other’s opposites. This is also our approach in this paper. The line

network, representing the lines along which trains services will be run, also called train relations, is fixed by the Belgian

railway operator and we considered it given. It is not altered in our optimisation, nor is the halting pattern of each train

relation. We currently do not impose temporal spreading of alternative trains. These constraints are usually enforced to limit
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Table 1

Timetabling approach and features comparison. n/r= nominal or robust, res. = resolution, CP = constraint programming, IP = Integer Program-

ming, ILP = Integer Linear Programming, SAT = satisfiability, cond. & comp. = condensation and compensation, heur. = heuristic, mc flow =
multi-commodity flow, JSP = Job Shop Problem, sc = sections, cont. = continuous, disc. = discrete, NS = Nederlandse Spoorwegen (= Dutch

Railways), NE = The Netherlands, BE = Belgium. and GE = Germany.

Publication Approach Time n/r Objective #trains Tool name@

res. (function) #stations company

#lines

Macro-timetabling

Serafini and Ukovich (1989) PESP 1’ n Feasibility

Schrijver and Steenbeek (1993) PESP, CP 1’ n Feasibility DONS&CAD-

ANS@NS, NL

Nachtigall (1996) Multiple freq. 1’ n Feasibility 40l

Nachtigall and Voget (1997) Genetic algorithm Cont. r min(wait t., cost) 28t,42s

Peeters (2003) PESP, IP 1’ n,r Various 37t,74s

Semet and Schoenauer (2005) Evolutionary r Min. total delay,

algorithm resilience

Lie (2006) Min. dwell time

Liebchen (2006) PESP, ILP 1’ n Min. wait time 37t @Berlin Un-

Liebchen (2007) some transfers derground, GE

Kroon et al. (2007) Stochastic Cont. r Robustness 56t

optimisation improvement 40s

Nachtigall and Opitz (2008) Modulo simplex 1’ n Min. weighted 92t

calculations sum of slack ≥ 104s

Kroon et al. (2009) PESP, CP and 1’ n Feasibility and DONS&CAD-

ILP improved transfers ANS@NS, NL

Schöbel and Kratz (2009) PESP r Eff. and robust.

(acyclic) pareto opt.

Fischetti and Monaci (2009) Robust optim. and

simplified stoch. r Light robustness 1l

programming

Cacchiani et al. (2010) (acyclic) Lagrangian heur. r Eff. and robust. 1000t,54s

Galli and Stiller (2010) Sharp trees n Feasibility

Großmann et al. (2012) SAT, binary .. 1’ n Min. weighted 1336t, TAKT @DB

Kümmling et al. (2013) .. search heuristic sum of slack 3027s Netz AG, GE

Sparing et al. (2013) PESP cont. r Min. cycle time

ILP (feas. & stab.)

This paper: Sels et al. PESP cont. r Min. expected 203t RhinoCeros

ILP total passenger 847s @Infrabel, BE

journey time

Micro-timetabling: includes platforming and routing

Odijk (1996) PESP cut generation 1’ n Feasibility 18t,1s

Zwaneveld et al. (1996) Branch and cut 1’ n Feasibility 18t,1s STATIONS

heuristic @NS, NL

Caimi et al. (2004) Fixed point iter. heur. n Feasibility 19t

local search optim. r delay tolerance 1s

Caimi et al. (2009) Decomposition Disc. r Max. planned 32t

& Caimi (2009) in condensation and comp. zones train movements 1s

Burdett and Kozan (2010) JSP, tabu search cont. n feasibility 54t,

Caprara et al. (2011a) Node packing disc. r max. trains 237t

ILP planned 1s

Caimi et al. (2011) time exp. graph disc. r max. planned 67t

mc flow, ILP Train movements 1s

Liu and Kozan (2011) JSP, ILP Cont. n Min. makespan 37t,43sc

De Fabris et al. (2013) (meso) Heur., mc flow Meso feas. ,120s

Sels et al. (2014) ILP, (fixed arr. and dep. times) cont. n max # trains 1028t, Leopard

(acyclic and cyclic) platformed 1s @Infrabel, BE

Micro–macro timetabling: includes platforming and routing

Schlechte et al. (2011) (acyclic) Aggregation 6s...30s n Max. planned trains 196t,18s

Bešinović et al. (2013) Aggregation & 5s r feas. & Robust 40t,26s

Bešinović et al. (2015) de-aggregation

the inter-departure times and reduce the waiting times in the station for some categories of departing passengers. We prefer

to impose temporal spreading of alternative trains in a softer way via the objective function in future research.

Minimal running times are calculated by the infrastructure manager based on the relevant input parameters: train ma-

terial (performance of locomotive(s), load of car(s)), track parameters (slope, curvature) and this for the worst case value

of all parameters, giving the longest time amongst all parameter values. To not underestimate the minimum, Infrabel adds

an additional 5% to this longest time. This result is used as ride minimum time. The minimum dwell time per stop of each

train is also specified by the operator. We assume a minimum of 3 min for all transfers. This is a parameter that can be
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further tuned to stations when walking times between station platform tracks become available. The minima required for

ride, dwell, transfer, headway and turn-around activities are given as multiples of 6 s. All supplements in our timetable for

all these activities are modelled as continuous variables. However, due to all minima being specified as multiples of 6 s, and

the presence of cycles in the timetable graph, many supplements also take values of multiples of 6 s.

When a unit of rolling stock is serving a relation in one direction and also the relation in the opposite direction, a

turn-around edge is added to our graph, creating a minimum turn-around time requirement. When this is not the case, we

suppose that another rolling stock unit can serve the opposite relation, but our model does not decide if this is possible. The

minimal turn-around time in our optimisations was set to 4 min. This is the default initial minimum value which Infrabel

assumes for normal turn-around operations. Some trains, train drivers or train operator companies may demand more turn-

time and for these cases this parameter can be changed easily in our model. Decisions on which train-sets serve which

relations in both directions are taken by the train operator company and this information is typically not fully available to

the infrastructure company. Full vehicle allocation is performed by the train operator after timetabling. The cases where the

same train set serves both directions of a relation, are known to the operator and not the infrastructure company. For these

cases, a minimal turn-around time chosen by the operator and not known to the infrastructure company is used. When this

data is available, our model could be run again with this complete information, but this time by the train operator company.

There is no reason to expect that the performance of our model would then significantly degrade.

We do not make a distinction between intermediate, transfer and end stations. Our model is general enough to treat any

station in the same way and models all transfers in every station, whenever they can occur, meaning whenever two trains

stop in the same station, irrespective of their – yet unknown – arrival and departure times.

A train can experience a knock-on delay (secondary delay) caused by a delay of the train in front of it. To be able to

estimate these secondary delays between trains, we need an estimate of the primary delays as a known input to our system.

Measured total delays are the sum of the primary and the secondary delays. Primary delays are timetable independent,

called exogeneous, while secondary delays are timetable dependent (Sun et al., 2014), called endogeneous. However, since

we currently lack the data in Belgium to separate the measured total delays into primary and secondary delays, we have to

resort to another method of estimating primary delays. We currently suppose primary delay distributions of each separate

activity (ride, dwell, transfer) to be independent and to have an average proportional (a = 2%) to its activity minimum time.

3. Optimality: model objective function

Our approach to optimise a timetable for passengers was first described in Sels et al. (2011b). It consists of the two steps

we call reflowing and retiming. In the reflowing step we determine the number of passengers in each train on each part

of the network (Sels et al., 2011b). This information is used in the objective function for the retiming step, also known as

timetabling.

We will only give a qualitative description of our objective function, as the main focus of this paper is the derivation of

the PESP constraints of our model. As derived formally in detail in Sels et al. (2013a, 2013b), our objective function consists

of the sum of the expected passenger time for each edge in the event activity graph G(V, E) that corresponds to a passenger

activity. So, for each ride, dwell and transfer edge we model an expected passenger time. We express this expected passenger

time of an edge as a function of its minimum time and its added supplement time. The shape of this function mainly depends

on the expected primary delay distribution and consequently, so does the supplement that should be ideally added. The

scale of this function depends on the number of passengers involved. This indicates the relative importance of the expected

passenger time of one edge compared to that of another and these are balanced by the objective function.

As an example, the expected transfer cost function of a transfer supplement time, is a U-shaped function, with a typical

minimum value around 3–6 min, depending on primary delays. This is the case because for this range of supplements,

the trade-off of expected transfer time for all cases of a successful versus all cases with a missed transfer is minimal.

Probabilities of these cases are calculated from the expected primary delays and are correctly taken into account in this

trade-off. The penalty for missing a transfer is the time is takes passengers to wait for the alighting train one hour later.

For the primary delays, we assume negative exponential distributions which is motivated by Goverde (1998b) and Yuan

(2006) and is also common practice (Kroon et al., 2006; Vansteenwegen and Van Oudheusden, 2006). These distributions

have an average (=expected value) that can be set to a certain fixed percentage a of the minimum time for that activity.

This average can in theory be determined by inspecting logs of trains as they are running in the current timetable. This has

been described by Goverde and Hansen (2000) and Daamen et al. (2009) for the Dutch and by Labermeier (2013) for the

Swiss infrastructure. For now, we assume the same value of a for all ride, dwell and transfer edges, for all trains and for all

tracks. The value of a is typically chosen in the range of 1–5% (Goverde, 1998a).

As for secondary delays, or knock-on delays, our model already contains the graph edges associated to these. Indeed, they

are the same edges as the headway edges, temporally separating pairs of trains that use the same infrastructure resource.

So for each headway edge, we also add a term in the objective function that represents the knock-on time or secondary

delay that passengers on the second train may experience in case the first train is delayed. In our model, as derived in

Sels et al. (2013a), this time depends on the delay distributions of both trains and on the number of passengers on the

second train. Obviously, the total knock-on time is proportional to the number of passengers on the second train. Also,

the expected knock-on passenger time forms a decreasing function of the train separating supplement si, j, since the higher

the separation, between two trains i and j, the lower the expected knock-on delay. Fig. 1 shows an example of a knock-on
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Fig. 1. Knock-on delay cost function.

delay cost function. The horizontal axis shows the supplement between 0 and 57 min and on the vertical axis the green

curve is the actual cost function. The red piecewise linear approximation of it is used in our MILP model.

This concludes our qualitative discussion of the objective function of our PESP MILP model representing the timetabling

problem. In the next sections, we derive all constraints for this model.

4. Feasibility: mandatory model constraints

In Section 4.1, we define our graph of train and passenger activities and then introduce some notation in Section 4.2. This

allows us to derive all constraints in Sections 4.3, 4.4 and 5. Note that all notation is summarised in Table 2 in Section 6 for

quick reference.

4.1. Definition of graph, vertices and edge types

We consider train and passenger activities. We set up a directed graph G(V, E) with vertex set V and edge set E. Every

vertex represents an arrival or departure of a train in the timetable. Every edge is an activity of a train or/and of passengers.

Passenger activities are ride, dwell and transfer. Train activities without passengers are of one type only: turn-around. The

respective edge sets are called Er, Ed, Etr and Eta. We also introduce the set Ehw of headway-edges. Such an edge always

contains a headway constraint, indicating that a pair of trains should be separated by a minimum time. Whenever a headway

edge is modelled, we also model a knock-on delay on the same edge, which implies an expected passenger knock-on delay

term in our objective function. Primary activities are activities that are related to only one train. We call the set of primary

activity edges E′ = Er ∪ Ed . Secondary activities are activities that occur between two trains. We call E′′ = Etr ∪ Ehw ∪ Eta. It

holds that E = E′ ∪ E′′.

4.2. Function notation

In the following sections, we will need the following notation. The type of an edge is either ride, dwell, transfer, headway

(=knock-on) or turn-around. We use ¬ to mean Boolean negation. We also use the following functions on a graph G(V, E):

i: E → V so that i(e) equals the unique ‘in’ vertex of edge e (source) and

o: E → V so that o(e) equals the unique ‘out’ vertex of edge e (destination),

− : E → E so that −e equals the unique inverse edge of edge e, −e is defined by o(−e) = i(e) ∧ i(−e) = o(e). ∀t ∈ {r, d}: it:

V → E so that it (v) equals the unique type-t-edge that ends in vertex v and

∀t ∈ {r, d}: ot: V → E so that ot (v) equals the unique type-t-edge that starts in vertex v,

∀t ∈ {r, d}: it: E → E so that it(e) equals the unique type-t-edge that precedes edge e and

∀t ∈ {r, d}: ot: E → E so that ot(e) equals the unique type-t-edge that succeeds edge e.

Note that the word unique here, means that no two edges can satisfy the mentioned property and so at most one

result can be returned by each of these functions. It is possible that no single edge satisfies the properties of the function

definition. For example, ir(v0) where v0 corresponds to any vertex in the station where a train starts is not defined. The set

of results of the function is then the empty set. So, for example, in a constraint generation context, no constraint will be

generated for the occurrence ir(v0). Also remark that, we use the same function name it both from the domain V and from

the domain E. From the type of the argument to it, it will be clear which function is meant. The same holds for ot. Lastly,

note that for t ∈ {tr, ta, ko}, so for secondary edges, it and ot are not defined. Indeed multiple ‘in’ or ‘out’ edges could then

typically result.

¯ : Ehw → Ehw so that e equals the unique opposite headway edge from train 2 to 1 when e goes from train 1 to 2.

For two trains riding in the same direction on an open track, a headway edge goes from the end of a ride activity of

train 1 to the end of a ride activity of train 2 or goes from the beginning of a ride activity of train 1 to the beginning

of a ride activity of train 2. So, for these headway edges e we can define its opposite headway edge e by its vertices as

∀e ∈ Ehw : i(e) = o(e) ∧ o(e) = i(e).

For two trains riding in the opposite direction on a single track, firstly, a headway edge goes from the end of a train 1

ride activity to the beginning of a train 2 ride activity. So, for these headway edges e we can define its opposite headway

edge e by its vertices as ∀e ∈ Ehw : i(e) = o(or(e)) ∧ o(e) = i(ir(e)). Note that e, just like e, will go from an end of ride vertex

to a beginning of ride vertex.
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For two trains riding in the opposite direction on a single track, secondly, due to the cyclical nature of our schedule, we

also need to add headway edges between the beginning of a ride edge of train 2 to the end of the ride edge of (actually

the cyclically next occurrence of) train 1. Definition of opposite edges is slightly more involved: ∀e ∈ Ehw : i(e) = i(ir(i(e))) ∧
o(e) = o(or(i(e))).

Note that for all headway edges, we require a headway of 3 min, both for same direction and opposite direction trains.

These 3 min are a usual approximation of what is considered safe in many countries. If long trains operate at lower speed in

interlocking areas and the set-up of routes is done manually, more headway time may be required. Considering these cases

requires more microscopic data than directly available to us. In the future, we hope to extend our model with station and

train-couple specific minimum headway times. We do not directly consider extra time corresponding to the passing time

for the length of a train in our macroscopic timetabling. We suppose that these times are small since trains are riding fast

outside stations. If this is a concern, the 3 min minimal headway time can be increased.

¯ : Etr → Etr so that e equals the unique opposite transfer edge from train 2 to 1 when e goes from train 1 to 2, in the same

station. A transfer edge however, goes from the end of a ride activity of train 1 to the beginning of the ride activity of train

2. So, for a transfer edge e we must define its opposite transfer edge e by its vertices as ∀e ∈ Etr : i(e) = i(id(o(e))) ∧ o(e) =
o(od(i(e))).

4.3. Mandatory constraints

The following constraints are mandatory, meaning each constraint has to be part of our model to guarantee that each

solution is a valid timetable.

4.3.1. Edge constraints (intra-edge constraints)

Since each edge e′ ∈ E′ represents an activity, and each secondary edge e′′ ∈ E′′ a time difference with an enforced

minimum, all e ∈ E = E′ ∪ E′′ have a begin time be, minimum duration time me, supplement time se and end time ee. So we

add the obvious constraints to our model:

∀e ∈ E : be + me + se = ee (2)

In our model, all be and se are variables that have to be determined by the solver and all ee are expressions that are

derived by Eq. (2) by the solver. The me are constants that are fixed for our model. For a ride edge, me is the minimum

ride time that has been typically calculated by the infrastructure management company, taking into account train and in-

frastructure properties. For a dwell edge, me is the minimum dwell time that has typically been decided by the operator,

considering minimal necessary times for passengers to embark on or alight from a train. For a transfer edge, we currently

set me to three minutes, as we consider this as generally sufficient for the walking duration of passengers between the

arrival time of their first train and the departure time of their second train. Note that the solver for our model, certainly for

transfers taken by many passengers, will typically add some minutes for the supplement se to make the passenger trans-

fer robust against transfer delays. For a turn around edge, we take me equal to four minutes as this is the preference of

Infrabel’s main operator, NMBS. For a knock on edge, me is set to three minutes as this is considered minimal but safe by

Infrabel.

4.3.2. Node constraints (inter-edge constraints)

We define T as the period of our cyclic timetable. If i(e) is the in vertex of the edge e and o(e) its out vertex, it then

holds that

∀o(e0)=i(e1)(e0, e1) ∈ E′ × (E′ ∪ E′′) : ee0
= be1∀o(e0)=i(e1)(e0, e1) ∈ E′′ × E′ : ee0

+ de0
· T = be1

.
(3)

where de0
is an integer decision variable, defined for secondary edges e0 ∈ E′′ only. Consider a transfer edge e. The idea

is that, if Eqs. (3) that contain a variable de hold, then there is a valid transfer between sometrain instance of hourly train

series t1 and some instance of hourly train service t2. Since both train services occur every hour, it follows that there is

also a valid transfer from every train instance from t1 to every train instance from t2, with the same values for me and

se. The same reasoning holds for all other secondary edge types. So the exact integer value of de does not matter much for

feasibility. Peeters (2003) explains though, that its allowed range affects solver time. Section 4.3.4 explains our range choices

for our integer variables.

The equations ∀o(e0)=i(e1)(e0, e1) ∈ E′′ × E′′ : ee0
+ de0

· T = be1
for the set-product E′′ × E′′ are not needed, since every

secondary edge e ∈ E′′ in our graph, always occurs between the end and the beginning of a primary edge, so the constraints

present in constraints (3) already fix their begin and end times. Not adding the constraints for E′′ × E′′ saved us some model

setup time, and more importantly, also significant model solver time.

4.3.3. General bounds on continuous variables

We define δ as the (smallest) time resolution unit of our system. For both primary and secondary supplements we allow

the range se ∈ [0, T − max(me, δ)]. This guarantees that the length of a primary edge e being me + se belongs to the interval

[me, T − max(0, δ − me)]. Supplements of primary edges can be freely chosen. However secondary edges have to fit between
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them, so their lengths me + se + de · T are constrained by the difference between the vertices on primary edges it connects.

One can see that any necessary length that can occur in our system, can be constructed by this expression. Indeed all edge

lengths in our system will be (positive or negative) multiples of δ. So, summarised, we add the bounds

∀e ∈ E : 0 ≤ se ≤ T − max(me, δ) (4)

and unlike tighter bounds, these will never cause infeasibilities.

4.3.4. General bounds on integer variables

Each integer variable de0 occurring in Eqs. (3) represents the difference between the index i1 of the train in train series t1

and the index i2 of the train in train series t2. We plan all trains, complete from begin time hlo hours to end time hhi hours.

This means that the range of a difference of two arbitrary times in this interval is between (hlo − hhi) hours and (hhi − hlo)

hours, so the range for any de on a secondary edge, which always indicates such a difference of time, is

∀e ∈ E′′ : (hlo − hhi) ≤ de ≤ (hhi − hlo). (5)

Because currently all our selected trains are planned between 6am and 11am, we have an interval [−5,+5] for each de.

In some cases, as we will see in Sections 4.4.1–4.4.3, 5.1, 5.3 and 5.4, these bounds will still be tightened.

4.3.5. All trains start in the first hour

To make sure that every train is scheduled in every hour, we require that the first ride activity of each train should start

in the first hour of the time interval we plan all trains in. The following constraints are added to the model:

∀¬∃id(e)e ∈ Er : hlo · T ≤ be < (hlo + 1) · T, (6)

where ¬ means negation and ∃id(e) means that there exists a dwell predecessor edge to the edge e. For ride edges the whole

condition only evaluates to true for the first ride edge of each train service.

4.3.6. All passing supplements are zero

We define the function s: Ed → {true, false} so that ∀e ∈ Ed: s(e) is true if dwell edge e represents a stopping activity and

false if it represents a passing activity. In case a train passes a station, the minimum dwell time me is zero and we also set

the corresponding dwell supplement to zero:

∀¬s(e)e ∈ Ed : se = 0. (7)

Note that for any dwell activity that corresponds to a train that does not stop, no transfers to or from this train can exist.

So we also do not define transfers for such dwell activities. For each pair of trains that stop in a station, we define transfers

between them in both directions.

4.4. Odijk’s rule for integers variables of cycle edges: feasibility and bounds

Before we go on we need to present two equations, derived by Odijk (1996). These concern constraints defined on undi-

rected cycles of our graph. In each cycle, we make a weighted sum of edge lengths, traversing all its edges in a chosen

loop direction. If we follow an edge e+ pointing in this loop direction (e+ ∈ c+), we add its length. If we follow an edge

e− pointing against this loop direction (e− ∈ c−) we subtract its length. The result must be 0. In each undirected cycle c, it

holds that

∀c ∈ C(G) :

( ∑
e∈(c+∩E′)

me + se

)
+

( ∑
e∈(c+∩E′′)

me + se + de · T

)

=
( ∑

e∈(c−∩E′)
me + se

)
+

( ∑
e∈(c−∩E′′)

me + se + de · T

)
. (8)

Consider a graph G = (V, E, l, u) of vertices V, activity-edges E, a vector l of integer lower bounds for the lengths of all

edges and a vector u of integer upper bounds for the lengths of all edges. Odijk (1996) proved from Eq. (8) that a PESP

instance defined by G = (V, E, l, u) and the set of all cycles C(G) and cyclic period T is feasible if and only if

Lc =  1
T (

∑
e∈c+ le − ∑

e∈c− ue)�,

∀c ∈ C(G) : ∀e ∈ c′′ : ∃de ∈ Z : Lc ≤ Mc ≤ Uc, where Mc = −(
∑

e∈c+ de − ∑
e∈c− de),

Uc = � 1
T (

∑
e∈c+ ue − ∑

e∈c− le)�.

(9)

Here c′′ = c ∩ E′′ is the set of secondary edges of c. We will use Eq. (9) several times in Sections 4.4.1–5.5 to derive

tighter bounds on integer decision variables and thereby reduce solver times. Note that Odijk actually defines a vector p

where pe = −de,∀e ∈ E′′. In Eq. (8), +de would be replaced by −pe then as well.

Eqs. (8) and (9) together ensure that the total cycle duration is a multiple of T. One can see that this property is a

necessary condition for any cycle in the system, if after some multiple n of T, the schedule is to be repeated. The question
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Fig. 2. Mandatory cycles for train pairs riding in the same direction and in opposite direction on the same track.

as to in how few multiples n of T the schedule can be repeated is not answered by the resulting values of me, se and de

alone, but also depends on the available train resources. More specifically, for a cycle c that is carried out by rc available

trains of the same train relation, and takes time nc · T, the lowest possible time tc to repeat it is tc =  nc
rc

· T�. So for the

whole schedule, its minimum repeat time is the smallest common multiple over all tc over all cycles that are carried out

by a single train set. If one also wants to ensure that all potential transfers between all train pairs take at most time T, one

has to repeat every train service every time T by ensuring rc = nc.

4.4.1. Separate and forbid reordering of same direction trains on the same open track section

Consider the situation shown in the left half of Fig. 2. A pair of trains rides on the same open track section in the same

direction. The headway time needs to be respected, both between the times that the trains enter and the times that they

leave the resource. As described before, in our graph, for these train pairs and at the corresponding ride edges, we added

headway edges both between the beginnings of these pairs of corresponding ride edges and also between the endings of

these pairs of corresponding ride edges, and this in both directions. Bottom left, we see that a trapeze shaped cycle is

formed with two upwards pointing headway edges and two ride edges. The set of all these cycles is defined by a condition-

definition-function cd(hl; ru, rd, hr). Here, hl stands for the left headway time edge (knock-on edge), ru stands for the upper

ride edge, rd for the down ride edge, and hr stands for the right headway time edge. In the definition of cd(hl; ru, rd, hr),

we specify how we calculate the edges ru, rd and hr, if they exist. Whenever we can derive all edges ru, rd and hr, we will

formulate a constraint over these edges. The condition under which all edges can be derived is

cd(hl; ru, rd, hr) ≡ hl ≺ hl :

∃ru ∈ Er : ru = or(o(hl )) :

∃rd ∈ Er : rd = or(i(hl )) :

∃hr ∈ Ehw : hr = ehw(o(rd), o(ru)) (10)

Any condition-definition-function is implemented in software as a series of nested if-statements. For example, for Eq. (10),

’if (hl ≺ hl )’ will restrict the inner body to cases where (hl ≺ hl ) holds. Within this first if-statement, the next statement

will be ’if (∃ru ∈ Er : ru = or(o(hl )))’ and so forth. The condition hl ≺ hl , meaning hl comes strictly before hl in the ordered

list of all edges we keep, is added to avoid that we add symmetric constraints, one for (hl , hl ) and one for (hl , hl ), which

we think would only deliver similar information to the solver. The expression ∃ru ∈ Er : ru = or(o(hl )) selects the ride edge

that starts from the end of the headway time edge hl, if it exists. It does not exist in the case that this headway edge hl

is pointing to the end instead of to the beginning of a ride edge. A similar expression is added to derive the ride edge rd.

Lastly hr is calculated as the unique headway edge between the end points of the ride edges rd and ru. For the cases where

cd(hl; ru, rd, hr) succeeds in defining the three new edges, it defines a cycle with four edges.

As these small trapeze shaped cycles chl ,trap, we get ∀cd(hl ;ru,rd ,hr )hl ∈ Ehw : chl ,trap = (hl , ru, −hr,−rd). We add the cycle

constraints to our model:

∀cd(hl ;ru,rd ,hr )hl ∈ Ehw : (mhl
+ shl︸ ︷︷ ︸

0≤•<T

+dhl
· T ) + (mru

+ sru︸ ︷︷ ︸
0≤•<T

) − (mhr
+ shr︸ ︷︷ ︸

0≤•<T

+dhr
· T ) − (mrd

+ srd︸ ︷︷ ︸
0≤•<T

) = 0. (11)
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Considering the ranges of terms marked in Eq. (11), applying Odijk’s Eq. (9) to these cycles, gives for the ranges of the

integers: ∀cd(hl ;ru,rd ,hr )h ∈ Ehw : −1 =  0+0−(T−δ)−(T−δ)
T � ≤ dhl

− dhr
≤ � (T−δ)+(T−δ)−0−0

T � = 1. Instead of adding these bounds,

we first also require that there are no reorderings between trains 1 and 2. This is formally written as

(mhl
+ shl

+ dhl
· T ) div T = (mhr

+ shr
+ dhr

· T ) div T, (12)

where ‘div’ means integer division. Considering the ranges in Eq. (11) this is equivalent with dhl
= dhr

. So, we enforce in our

model:

∀cd(hl ;ru,rd ,hr
)h ∈ Ehw : dhl

= dhr
. (13)

4.4.2. Separate and forbid reordering of opposite direction trains on the same single open track section

Now, consider the situation shown in the right half of Fig. 2. A pair of trains rides on the same single track section in

opposite direction. The headway time needs to be respected, between the time that the first train leaves and the second

train enters the track. In our graph, for these opposite train pairs, we added headway edges from end to beginning of the

corresponding ride edges, but also from beginning to end of the ride edges to cover the cyclical train knock-on relation.

Bottom right, we see that a trapeze shaped cycle is formed with two upwards pointing headway edges and two ride edges.

The set of all these cycles is defined by a condition-definition-function,

cd(hl; ru, rd, hr) ≡ hl ≺ hl :

∃ru ∈ Er : ru = or(o(hl )) :

∃rd ∈ Er : rd = ir(i(hl )) :

∃hr ∈ Ehw : hr = ehw(i(rd), o(ru)) (14)

and as small trapeze shaped cycles chl ,trap, we get ∀cd(hl ;ru,rd ,hr )hl ∈ Ehw : chl ,trap = (hl , ru,−hr, rd). We arrive at the cycle

equations:

∀cd(hl ;ru,rd ,hr )hl ∈ Ehw : (mhl
+ shl︸ ︷︷ ︸

0≤•<T

+dhl
· T ) + (mru

+ sru︸ ︷︷ ︸
0≤•<T

) − (mhr
+ shr︸ ︷︷ ︸

0≤•<T

+dhr
· T ) + (mrd

+ srd︸ ︷︷ ︸
0≤•<T

) = 0 (15)

Considering the ranges of terms marked in Eq. (15), applying Odijk’s Eq. (9) to these cycles, gives for the ranges of the in-

tegers: ∀cd(hl ;ru,rd ,hr )h ∈ Ehw : −2 = −(T−δ)−(T−δ)+0−(T−δ)
T � ≤ dhl

− dhr
≤ �−0−0−(T−δ)−0

T � = 0. Instead of adding these bounds,

we first also require that there are no collisions between trains 1 and 2 riding in opposite directions on the same track. This

boils down to Eq. (12) which effectively says that train order on the track cannot change. Imposing this and considering the

ranges in Eq. (15) this is equivalent with dhl
= dhr

. So, we enforce in our model:

∀cd(hl ;ru,rd ,hr
)h ∈ Ehw : dhl

= dhr
. (16)

4.4.3. Separate and forbid or allow in-station reordering based on infrastructure and halting pattern

From the previous Section 4.4.1, we know how to forbid reordering of two trains on the same open track section. We

can use the same system for train pairs that cannot overtake each other in a station. This is the case when none of the

two trains makes a stop or also when the station doesn’t have enough platform tracks to allow reordering. When one train

stops and the other does not, the bounds interval of the expression dhl
− dhr

is different. We define the function iar: Ed × Ed

→ {true, false} so that ∀e, e′ ∈ Ed: iar(d) is true if the station infrastructure allows reordering between the dwell activities

e and e′ and false otherwise. Note that, by definition, ∀e, e′ ∈ Ed : iar(e, e′) = iar(e′, e). Currently, we only allow reordering

in stations when (1) these possess at least 4 platform tracks (2 in both directions) and (2) a switch grid is present. This

corresponds to the guideline currently used by the Belgian infrastructure manager. In Belgium this holds for 150 stations of

the 780 stations, so 19% of them. The possibility of reordering will also depend on whether both trains, just one train or no

trains stop or not.

Consider only the top part of Fig. 3. It shows two station dwell activities and the transfer and headway edges defined by

these. We derive the general bounds on the integer variables of the headway edges. The set of all the cycles containing the

dwell activities of two trains in the same station is defined by another condition-definition-function

cd(hl; du, dd, hr) ≡ hl ≺ hl :
∃du ∈ Ed : du = od(o(hl )) :
∃dd ∈ Ed : dd = od(i(hl )) :
∃hr ∈ Ehw : hr = ehw(o(dd), o(du))

(17)

and as small cycles, we get the trapezes ∀cd(hl ;du,dd ,hr )hl ∈ Ehw : chl ,trap = (hl , du, −hr,−dd). The corresponding cycle con-

straints enforced in our model are

∀cd(hl ;du,dd ,hr )hl ∈ Ehw : (mhl
+ shl︸ ︷︷ ︸

0≤•<T

+dhl
· T ) + (mdu

+ sdu︸ ︷︷ ︸
0≤•<T

) − (mhr
+ shr︸ ︷︷ ︸

0≤•<T

+dhr
· T ) − (mdd

+ sdd︸ ︷︷ ︸
0≤•<T

) = 0. (18)
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s

Fig. 3. Optional cycles for train pairs dwelling in a station.

Considering the ranges marked in Eq. (18), applying Odijk’s rule here gives ∀cd(hl ;du,dd ,hr
)h ∈ Ehw : −1 =

 (0)+(0)−(T−δ)−(T−δ)
T � ≤ dhl

− dhr
≤ � (T−δ)+(T−δ)−(0)−(0)

T � = 1, as the ranges of the integers. The specific cases of reordering

or not reordering now will tighten these bounds further, so we first enforce the following narrower intervals:

∀cd(hl ;du,dd ,hr
)h ∈ Ehw : if (¬iar(du, dd)) : −0 ≤ dhl

− dhr
≤ +0,

else if (¬s(du) ∧ ¬s(dd)) : −0 ≤ dhl
− dhr

≤ +0,

else if (s(du) ∧ ¬s(dd)) : −1 ≤ dhl
− dhr

≤ +0,

else if (¬s(du) ∧ s(dd)) : −0 ≤ dhl
− dhr

≤ +1,

else if (s(du) ∧ s(dd)) : −1 ≤ dhl
− dhr

≤ +1.

(19)

We believe that Eq. (19) represents the tightest bounds on the integer d-variables that can be calculated. Since some

other publications do not explicitly mention the ranges of integer variables in their models, comparison with other work

is hard. This completes our derivation of all mandatory constraints that guarantee that our model will produce only valid

timetables.

5. Computation speed: optional model constraints

In this section, we derive optional constraints which are only enforced to reduce solver times. Apart from the feasibility

criterion in Eq. (9) mentioned above, Odijk (1996) also describes the generation of constraints based on cycles. Even though

these cycle-based constraints are in fact linear combinations of constraints (2) and (3), they can be helpful in practice to

lower solver times (Peeters, 2003). Nachtigall (1994) showed that it is sufficient to impose the cycle periodicity constraints

on a set of cycles which is an integral cycle basis of the whole cycle space. This means that all cycles in the cycle space

are integer linear combinations of the cycles in this integral basis. A practical algorithm to arrive at such an integral basis,

more specifically a strictly fundamental cycle basis, is to first construct a spanning tree of the graph and then to construct

all cycles induced by the edges that do not belong to that tree. For a general graph, computing one of its spanning trees

requires quite some time, but we realised that the set of primary edges of our graph is very close to a complete spanning

tree of our graph and as a consequence each secondary edge can then simply be used to each induce one cycle. This avoids

having to calculate a spanning tree at all. Using this insight, and after performing many experiments, we arrived at our

own cycle sets, concentrating on secondary edges in our graph. Firstly, we focus on small cycles which contain only a few

secondary edges. In this way few integer variables are present, so that the induced constraints are simple. Secondly, we also

focus on secondary edges where many passengers are present and find a shortest cycle through these edges and generate

the corresponding constraint. The combination of both types of cycle constraints, delivers a model that can be solved quickly.

We describe our chosen cycle set and set of induced constraints in the following Sections 5.1–5.5.
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5.1. Opposite transfer pair induced small cycles: hourglasses

Consider the bottom left part of Fig. 3. It shows a part of a graph where two trains stop in a station and transfers in both

directions between these trains occur. Two opposite transfer edges t (from train 1 to train 2) and t (from train 2 to train

1) are always defined between two dwell edges (of train 1 and of train 2) when these both represent a train stop. We will

call du (dwell up) and dd (dwell down), between their respective begin and end vertices, with which a 4-edged cycle can

be formed. For both transfers t and t, the same cycle is formed, so we restrict ourselves to the transfers t for which t ≺ t

holds, where ≺ can be any total order defined on (transfer) edges. The condition-definition-function is

cd(t; du, dd) ≡ ∀t≺tt ∈ Etr :

du = od(i(t)),

dd = od(i(t)),

(20)

which in fact always succeeds in defining the edges du and dd. The opposite transfer-pair induced cycles ct are now defined

as ct = (t, −du, t, −dd). The constraints corresponding with these hourglass cycles which we add to our model are

∀cd(t;du,dd )t ∈ Etr :
mt + st︸ ︷︷ ︸

0≤•<T

+dt · T − (mdu
+ sdu︸ ︷︷ ︸

0<•<T

) + mt + st︸ ︷︷ ︸
0≤•<T

+dt · T − (mdd
+ sdd︸ ︷︷ ︸

0<•<T

) = 0.
(21)

In this equation the minimum dwell times mdu
and mdd

must be strictly positive, since no transfers are possible on

trains that do not stop. Applying Odijk’s Eq. (9) to this hourglass cycle and taking into account the ranges of terms marked

in Eq. (21), gives ∀t≺t t ∈ Etr : −1 =  (0)+(0)−(T−δ)−(T−δ)
T � ≤ dt + dt ≤ � (T−δ)+(T−δ)−(0)−(0)

T � = 1, for the ranges of the integers.

Eq. (21) can be rewritten as

∀cd(t;du,dd )t ∈ Etr :
+(dt + dt ) · T = +(mdu

+ sdu︸ ︷︷ ︸
0<•<T

) + (mdd
+ sdd︸ ︷︷ ︸

0<•<T

) − (mt + st︸ ︷︷ ︸
0≤•<T

+ mt + st︸ ︷︷ ︸
0≤•<T

).
(22)

If we disallow dwell times to become extremely long and suppose that (mdu
+ sdu

) + (mdd
+ sdd

) < T, then according to

Eq. (22), dt + dt can never equal 1. We could then reduce the upper bound to 0, giving

∀t≺tt ∈ Etr : −1 ≤ dt + dt ≤ 0. (23)

When we imposed stricter Eq. (23), solver times reduced significantly. When we further reduce the bounds interval in

(23) from [−1, 0] to [0, 0], we reduce the search space, but cannot guarantee feasibility. Even so, in practice, we still got

solutions returned in all cases, but on average solver times increased. Guaranteed feasibility and lower solver times are two

good reasons to keep the [−1, 0] interval in (23).

5.2. Opposite dwell-begin-headway induced small cycles: forward triangles

The bottom middle part of Fig. 3 also indicates the headway edges. Here, we only consider headway edges that connect

the beginnings of two dwell edges. This condition can be formulated as the restrictions ∃du ∈ Ed : du = od(h) and ∃dd ∈ Ed :

dd = od(h). We also restrict ourselves to the cases where both trains stop and transfers between them occur. The condition-

definition-function becomes

cd(h; du, tu, dd, td) ≡ h ≺ h :

∃du ∈ Ed : du = od(h) : ∃tu ∈ Etr : tu = etr(i(h), o(du)) :

∃dd ∈ Ed : dd = od(h) : ∃td ∈ Etr : td = etr(o(h), o(dd)).

(24)

Altogether, this gives the definition of ch, lut (a left up triangle) and ch, ldt (a left down triangle) as defined cycles for the

following headway edges h :

∀cd(h;du,tu,dd ,td )h ∈ Ehw :

{
ch,lut = (h, du, −tu)

ch,ldt = (h, td,−dd).
(25)

The constraints corresponding with these forward triangle cycles are

∀cd(h,;du,tu,dd ,td )h ∈ Ehw :

⎧⎪⎪⎨
⎪⎪⎩

(mh + sh︸ ︷︷ ︸
0≤•<T

+dh · T ) + (mdu
+ sdu︸ ︷︷ ︸

0≤•<T

) − (mtu
+ stu︸ ︷︷ ︸

0≤•<T

+dtu
· T ) = 0

(mh + sh︸ ︷︷ ︸
0≤•<T

+dh · T ) + (mtd
+ std︸ ︷︷ ︸

0≤•<T

+dtd
· T ) − (mdd

+ sdd︸ ︷︷ ︸
0≤•<T

) = 0.
(26)
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Applying Odijk’s Eq. (9) to the cycles lut and ldt and taking into account the ranges of terms marked in Eq. (26) gives for

the ranges of the integers

∀cd(h;du,tu,dd ,td )h ∈ Ehw :

{
0 =  (0)+(0)−(T−δ)

T
� ≤ dtu

− dh ≤ � (T−δ)+(T−δ)−(0)
T

� = 1

−1 =  (0)−(T−δ)−(T−δ)
T

� ≤ dtd
+ dh ≤ � (T−δ)−(0)−(0)

T
� = 0.

(27)

We add Eqs. (26) as well as (27) as constraints to the model.

5.3. Opposite dwell-end-headway induced small cycles: backward triangles

Similarly to the previous section, the bottom right part of Fig. 3 now shows headway edges that connect the beginnings

of two ride edges and we define

cd(h; du, tu, dd, td) ≡ h ≺ h :

∃du ∈ Ed : du = id(h) :
∃tu ∈ Etr : tu = etr(i(du), i(h)) :
∃dd ∈ Ed : dd = id(h) :
∃td ∈ Etr : td = etr(i(dd), o(h))

(28)

and as small cycles, the two backward triangles

∀cd(h;du,tu,dd ,td )h ∈ Ehw :

{
ch,rut = (h,−du, tu)
ch,rdt = (h,−td, dd).

The constraints imposed corresponding with these backward triangle cycles are

∀cd(h;du,tu,dd ,td )h ∈ Ehw :

⎧⎪⎪⎨
⎪⎪⎩

(mh + sh︸ ︷︷ ︸
0≤•<T

+dh · T ) − (mdu
+ sdu︸ ︷︷ ︸

0≤•<T

) + (mtu
+ stu︸ ︷︷ ︸

0≤•<T

+dtu
· T ) = 0

(mh + sh︸ ︷︷ ︸
0≤•<T

+dh · T ) − (mtd
+ std︸ ︷︷ ︸

0≤•<T

+dtd
· T ) + (mdd

+ sdd︸ ︷︷ ︸
0≤•<T

) = 0.
(29)

Considering the ranges of terms marked in Eq. (29), applying Odijk’s equation to these cycles rut and rdt, gives as imposed

ranges of the integers

∀cd(h;du,tu,dd ,td )h ∈ Ehw :

{
−1 =  (0)−(T−δ)−(T−δ)

T
� ≤ dtu

+ dh ≤ � (T−δ)−(0)−(0)
T

� = 0

0 =  (0)+(0)−(T−δ)
T

� ≤ dtd
− dh ≤ � (T−δ)+(T−δ)−(0)

T
� = 1.

(30)

5.4. Opposite headway edges integer constraints

Every headway edge h ∈ Ehw between trains 1 and 2 has an opposite headway edge h ∈ Ehw from train 2 to train 1.

The two-edged cycles formed by two opposite headways are ∀
h≺h

h ∈ Ehw : ch,opp = (h, h) and the corresponding constraints

which we enforce are

∀
h≺h

h ∈ Ehw : (mh + sh︸ ︷︷ ︸
0<•<T

+dh · T ) + (m
h

+ s
h︸ ︷︷ ︸

0<•<T

+d
h

· T ) = 0. (31)

Note that minimal headways mh and m
h

are strictly positive and sh and s
h

are zero or positive. This implies the bounds

in Eq. (31). Odijk’s equation now gives

∀
h≺h

h ∈ Ehw : −1 =  (δ)+(δ)−(T−δ)−(T−δ)
T

� ≤ dh + d
h

≤ � (T−δ)+(T−δ)−(δ)−(δ)
T

� = 1. (32)

In addition to Odijk’s rule, we see that the equation equivalent to (31)

∀
h≺h

h ∈ Ehw : (dh + d
h
) · T = −(mh + sh︸ ︷︷ ︸

0<•<T

+ m
h

+ s
h︸ ︷︷ ︸

0<•<T

)

︸ ︷︷ ︸
<0

(33)

must have a strictly negative (integer) solution for (dh + d
h
), so together with (32) this results in the improved tighter

bounds, which we add to our model:

∀
h≺h

h ∈ Ehw : dh + d
h

= −1. (34)
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5.5. Dijkstra generated cycle constraints

Over our graph, for every transfer edge e, we define a cycle ce induced by that edge. It is calculated as the concatenation

of itself with the edge path p that starts at o(e) and ends at i(e) and has minimal edge length, based on minima of edges

only, so supposing the supplements are zero. We calculate the shortest path on the implied undirected version of our

directed graph. So ce = e ⊕ p : p = shortestPath(o(e), i(e)), where ⊕ stands for the concatenation of subsequent edges. We

calculate p by a modified Dijkstra algorithm, which includes a priority queue for speedup. We did this but only for transfer

edges. When also doing this on headway edges we did not notice any reduction in solver times. As do Odijk (1996) and

Peeters (2003), we define c+ and c− as the subsets of edges in cycle c with opposite orientations. We add the following

constraints:

∀t ∈ Etr :
∑

e∈(c+
t ∩E′)

me + se +
∑

e∈(c+
t ∩E′′)

me + se + de · T

=
∑

e∈(c−
t ∩E′)

me + se +
∑

e∈(c−
t ∩E′′)

me + se + de · T. (35)

Since (9) is a necessary condition for feasibility, we could try and impose, ∀t ∈ Etr :  1
T (

∑
e∈c+

t
le − ∑

e∈c−
t

ue)� ≤
−(

∑
e∈c+

t
de − ∑

e∈c−
t

de) ≤ � 1
T

(∑
e∈c+

t
ue − ∑

e∈c−
t

le

)
�, as companion equations to Eq. (35), without reducing the solution

space. However, when we did so, solver times did not further reduce, so we removed them again.

For efficiency, the modified Dijkstra algorithm was parallellised both on the core-level (using http://openmp.org/ openMP)

and the machine-level (using http://www.open-mpi.org openMPI). OpenMP (multi-platform shared-memory parallel pro-

gramming) and openMPI (message passing interface) are open source, portable C++ (and Fortran) libraries that are created

to allow programmers to parallellise their sequential code over respectively different cores per processor and over different

machines on the network. This behaviour is obtained by inserting simple ’pragma’-statements, for example around for loops

to parallellise these. This then directs the compiler to generate code that will execute Dijkstra algorithms for different OD

pairs concurrently on all available cores and machines.

5.6. Limiting the set Etr

For description of our MILP model, we define the set Etr as only containing transfer edges defining a passenger flow

occurring on them of at least fmin. Once this model is solved, the timing of each transfer edge with lower flow than fmin

can be derived from the timing of the two ride edges which it connects. Although these smaller flows of a transfer edge

are not taken into account in our optimisation model, they are used during the simulation based evaluation of the new

timetable that results from our optimisation model. We currently set fmin to 10 passengers per hourly transfer. This brought

down solver time of our model from many hours to about two hours. When we set fmin to 50, we typically obtain one hour

as solver time, but then the evaluation shows that almost no travel time reduction is obtained. The reason is that what is

gained in the optimisation of the bigger flows, is almost entirely lost in the non-considered small flows again.

6. Model summary

The notation used is defined in Table 2. In the previous sections, we derived the mandatory constraints for our MILP

model as given in Table 3 and the optional, solver speed improving constraints in Table 4. Thanks to the natural, large

Table 2

Notation used. Note that de is defined ∀e ∈ E′ ′ , while be , me , se , ee are defined ∀e ∈ E′ ∪ E′ ′ .

T Cyclic timetable period δ Timetable time resolution

hlo First hour of schedule hhi Last hour of schedule

E′ Set of primary edges r Ride be Begin time of e

E′ Er ∪ Ed d Dwell me Minimum time of e

E′ ′ Set of secondary edges hw Headway se Supplement time of e

E′ ′ Etr ∪ Ehw ∪ Eta ta Turn-around ee End time of e

E Set of all edges tr Transfer de Integer variable for e

E E′ ∪ E′ ′ t Edge type V Vertex set

i(e) In vertex of e it (v) Unique type t inbound edge of vertex v
o(e) Out vertex of e ot (v) Unique type t outbound edge of vertex v
et (v0, v1) Unique type t edge it(e) Unique type t predecessor edge of edge e

from vertex v0 to vertex v1 ot(e) Unique type t successor edge of edge e

s(d) True iff dwell activity d is a stop iar(d0, d1) True iff station infrastructure allows reordering between trains with dwell

activities d0 and d1

e is the edge between trains t2 and t1, that is the opposite of the edge e from train t1 to t2

cd(...) functions are condition defining functions that set the conditions under which rules apply and also define names for edges

used in the further expression
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Table 3

Mandatory constraints, enforced to generate valid timetables. The notation used is described in Table 2.

Intra-process constraints: ∀e ∈ E : be + me + se = ee

Inter-process ∀o(e0 )=i(e1 )(e0, e1) ∈ (E′, E′ ∪ E′′) : ee0
= be1

connection constraints: ∀o(e0 )=i(e1 )(e0, e1) ∈ (E′′, E′) : ee0
+ de0

· T = be1

Continuous variable bounds: ∀e ∈ E : 0 ≤ se ≤ T − max(me, δ).

Integer variable bounds: ∀e ∈ E′′ : (hlo − hhi) ≤ de ≤ (hhi − hlo)

All trains start in 1st hour: ∀¬∃id (e)e ∈ Er : hlo · T ≤ be < (hlo + 1) · T

Passing supplements are 0: ∀¬s(e)e ∈ Ed : se = 0

Separate same cd(hl ; ru, rd, hr ) =hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl )) :

direction trains ∃rd ∈ Er : rd = or(i(hl )) : ∃hr ∈ Ehw : hr = ehw(o(rd ), o(ru)).

on the same open ∀cd(hl ;ru ,rd ,hr )hl ∈ Ehw : ((mhl
+ shl

+ dhl
· T ) + (mru

+ sru
)

track section: = (mhr
+ shr

+ dhr
· T ) + (mrd

+ srd
))

and forbid reordering: ∧(dhl
= dhr

)

Separate opposite cd(hl ; ru, rd, hr ) =hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl )) :

direction trains ∃rd ∈ Er : rd = or(i(hl )) : ∃hr ∈ Ehw : hr = ehw(i(rd ), o(ru)).

on the same single ∀cd(hl ;ru ,rd ,hr )hl ∈ Ehw : ((mhl
+ shl

+ dhl
· T ) + (mru

+ sru
)

open track section: −(mhr
+ shr

+ dhr
· T ) + (mrd

+ srd
) = 0))

and forbid reordering: ∧(dhl
= dhr

)

Forbid or allow cd(hl ; du, dd, hr ) = hl ≺ hl : ∃du ∈ Ed : du = od(o(hl )) :

reordering ∃dd ∈ Ed : dd = od(i(hl )) : ∃hr ∈ Ehw : hr = ehw(o(dd ), o(du)).

within a station ∀cd(hl ;du ,dd ,hr
)h ∈ Ehw : ((mhl

+ shl
+ dhl

· T ) + (mdu
+ sdu

)

depending on = (mhr
+ shr

+ dhr
· T ) + (mdd

+ sdd
))

infrastructure: ∧ (if (¬iar(du, dd )) : −0 ≤ dhl
− dhr

≤ +0,

and halting patterns: else if (¬s(du) ∧ ¬s(dd )) : −0 ≤ dhl
− dhr

≤ +0,

else if (s(du) ∧ ¬s(dd )) : −1 ≤ dhl
− dhr

≤ +0,

else if (¬s(du) ∧ s(dd )) : −0 ≤ dhl
− dhr

≤ +1,

else if (s(du) ∧ s(dd )) : −1 ≤ dhl
− dhr

≤ +1)

Table 4

Optional constraints, only enforced to lower solver times. The notation used is described in Table 2.

Opposite transfers induced ∀t≺t t ∈ Etr : ((mt + st + dt · T ) + (mt + st + dt · T )

small cycles (hourglasses): = (mdu
+ sdu

) + (mdd
+ sdd

)) ∧ (−1 ≤ dt + dt ≤ 0)

Opposite cd(h; du, tu, dd, td ) = h ≺ h : ∃du ∈ Ed : du = od(h) :

dwell-begin-headway ∃tu ∈ Etr : tu = etr(i(h), o(du)) :

induced small cycles ∃dd ∈ Ed : dd = od(h) : ∃td ∈ Etr : td = etr(o(h), o(dd )).

(forward triangles): ∀cd(h;du ,tu ,dd ,td )h ∈ Ehw : ((mh + sh + dh · T ) + (mdu
+ sdu

)

= (mtu
+ stu

+ dtu
· T )) ∧ (0 ≤ dtu

− dh ≤ 1)

∧((mh + sh + dh · T ) + (mtd
+ std

+ dtd
· T ) = (mdd

+ sdd
))

∧(−1 ≤ dtd
+ dh ≤ 0)

Opposite cd(h; du, tu, dd, td ) = h ≺ h : ∃du ∈ Ed : du = id(h) :

dwell-end-headway ∃tu ∈ Etr : tu = etr(i(du), i(h)) :

induced small cycles ∃dd ∈ Ed : dd = id(h) : ∃td ∈ Etr : td = etr(i(dd ), o(h)).

(backward triangles): ∀cd(h;du ,tu ,dd ,td )h ∈ Ehw : ((mh + sh + dh · T ) + (mtu
+ stu

+ dtu
· T )

= (mdu
+ sdu

)) ∧ (−1 ≤ dtu
+ dh ≤ 0)

∧((mh + sh + dh · T ) + (mdd
+ sdd

) = (mtd
+ std

+ dtd
· T ))

∧(0 ≤ dtd
− dh ≤ 1)

Opposite headway ∀
h≺h

h ∈ Ehw : ((mh + sh + dh · T ) = −(m
h

+ s
h

+ d
h

· T ))

integer constraints: ∧(dh + d
h

= −1)

Transfer induced ∀t ∈ Etr :
∑

e∈(c+
t ∩E′ ) me + se + ∑

e∈(c+
t ∩E′′ ) me + se + de · T

Dijkstra cycle constraints: = ∑
e∈(c−

t ∩E′ ) me + se + ∑
e∈(c−

t ∩E′′ ) me + se + de · T

ranges of all supplement variables, we avoid a cause of infeasibilities that do occur in some other models. We give proof of

this in Appendix A.

7. Results

Compared to our previous papers Sels et al. (2011b, 2013a); 2013b), that focussed on our goal function, this paper fo-

cusses on the constraints. We discuss three main results of our work. Firstly, in Section 7.1, we show that our MILP model

avoids a cause of infeasibilities that does occur in other models. Secondly, in Section 7.2, for the case of all passenger trains

in Belgium, we show that we significantly reduce expected passenger travel time in practice. Thirdly, in Section 7.5, we show

that we can do so in relatively short solver times.

7.1. Feasibility: a solution is always returned in practice

Since our model has an objective function that properly penalises the choice of big supplements in a soft yet passenger

optimal way, there is no reason for us to add a hard constraint that restricts supplements to any arbitrary value lower

than T − δ. Other models (e.g. Sparing et al. (2013) and Kroon et al. (2009)) lack an objective function that automatically
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Table 5

For (different) primary delay distributions, characterised by their average of a% of minimum dwell and ride times,

properties of the (different) resulting optimised timetable are shown. Missed transfer probability of the original

timetable is shown for easy comparison.

a Solver Resulting Major Major All All Missed

% time, MILP flows flows non- flows flows non- transfer

gap, linearised linearised linearised linearised probability

time time time time Original Optimised

reduction, reduction, reduction, reduction, timetable, timetable,

min % % % % % % %

1 107 83.0 6.25 4.19 5.64 3.58 13.6 2.42

2 123 79.2 6.69 4.48 6.03 3.81 13.9 2.60

3 123 77.0 5.49 3.10 4.85 2.45 14.2 2.31

4 139 74.2 5.00 2.55 4.41 1.94 14.5 2.14

5 128 70.2 5.66 3.19 5.04 2.57 14.8 2.37

6 125 68.8 4.45 1.89 3.91 1.35 15.1 3.44

7 96 67.2 3.64 1.17 3.08 0.61 15.4 2.61

8 117 64.0 4.07 1.60 3.52 1.05 15.7 2.35

9 118 61.0 4.50 1.87 3.96 1.33 16.0 2.31

10 133 59.9 3.74 1.30 3.21 0.78 16.3 1.91

11 126 57.6 3.90 1.26 3.36 0.74 16.6 2.06

12 127 55.2 4.20 1.57 3.63 1.00 17.0 2.68

13 121 53.5 4.32 1.70 3.75 1.13 17.3 2.44

14 130 51.9 4.18 1.57 3.65 1.04 17.6 2.85

15 120 51.8 3.38 0.61 2.85 0.09 17.9 2.92

16 117 49.8 3.74 1.06 3.21 0.56 18.2 2.69

17 100 47.0 4.59 1.60 4.05 1.07 18.5 2.35

18 441 48.9 2.78 0.01 2.31 -0.46 18.8 2.63

19 144 44.9 4.55 1.75 4.03 1.24 19.1 2.87

20 134 44.9 3.97 1.04 3.51 0.58 19.4 2.34

restricts all supplements and so have to enforce a more arbitrary upper bound as a hard constraint. Usually, this upper

bound, directly or indirectly, is chosen lower than our T − δ. As a result, they may risk producing infeasibilities in their

model. We believe we have resolved this issue. We indeed notice that, over the last years, in all optimisation experiments

with our model described here, our solver did not report any infeasibility.

7.2. Quality: the solution has lower expected passenger travel time in practice

We applied our model for all passenger trains in Belgium departing between 7 and 8 a.m. in the timetable of March,

13th, 2013. We assume primary delay distributions with an average of 2% of the minimum time on all activities, which is

Infrabel’s current best estimate for morning peak hours. This case is mentioned as the second line of Table 5 and detailed

results are given in Fig. 4. All six sub-figures represent the change of some measure of time from before to after optimisation.

The top row represents planned time, the middle row represents linearised expected time, while the bottom row represents

actual expected time (non-linearised). This means that the difference in results between row 3 and row 2 is entirely due

to the difference between the non-linear cost curves (row 3) and our piecewise linear approximation of it (row 2). Using

non-linear optimisation may totally erase these differences, but it is much harder to solve a non-linear model than our

corresponding linear one. Of the two columns, the left column represents total train time. This is the sum over all hourly

trains of the trains total trip time, independent of the number of passengers on each train. The right column represents time

for all daily passenger streams, also the small streams not considered during optimisation. The colours (blue, yellow, green,

orange, red, purple) each stand for a particular activity (ride, dwell, depart, transfer, arrive, knock-on, respectively). There

are dark and light versions of some colours (yellow, green, orange, red, purple). The dark colour indicates minimum times,

while the lighter version indicates the supplement times of the same activity type. The shading with blue lines indicates

that these activities (all except knock-on) were convoluted with ride activities.

Considering planned train time in column 1, row 1, we see a negligible decrease of the total ride+dwell time supplements

from 12.63% to 11.42%. In column 1, row 2, evaluation via the linear cost functions shows a decrease of 13.21% to 12.40%.

Column 1, row 3, shows a very similar decrease from 13.24% to 12.50%. This small difference between row 2 and 3 indicates

that our piecewise linear approximation performs well. It should be noted, however, that our objective (and objective func-

tion) is not about minimising the total train running times (column 1) but it is about minimising the total passenger travel

time in practice (column 2).

Column 2, row 1 of Fig. 4, planned passenger time, demonstrates a much larger reduction of the ride+dwell supplements

than in planned train time, from 10.06% down to 2.76%. These are weighted by number of passengers. This same advan-

tageous larger expected time reduction in column 2 compared to column 1, is also present in the expected time domains.

Indeed, in column 2, row 2, representing evaluation of the linearised cost functions, ride-dwell supplements go down from

9.88% in the original timetable to 3.77% in our optimised timetable. In column 2, row 3, representing evaluation on the true,
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Fig. 4. Reducing train time and expected passenger time from original to optimised timetable as also reported in line 2 of Table 5. (For interpretation of

the references to colour in this figure, the reader is referred to the web version of this article.)

non-linear cost functions, supplement percentages go down similarly from 10.0% to 3.80%. But also for expected knock-on

time we reduce time (row 2 (5.93% down to 1.63%) and row 3 (5.06% down to 1.86%)). The decrease of these expected ride,

dwell and knock-on times is compensated only partially by the increase in expected transfer time (row 2 (10.43% up to

16.80%) and row 3 (10.18% up to 17.10%)). Note that this expected transfer time includes both successful and missed trans-

fers, properly weighted with their respective probabilities to occur. Our calculations, both during optimisation and during

evaluation, assume a penalty for a missed transfer of 1 h. Since our timetable is cyclic the same train occurs with the same
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Table 6

Problem instance statistics.

# ride edges 5078 # (continuous) b-variables 52,067

# dwell edges 4882 # (continuous) s-variables 52,067

# turn-around edges 168 # (continuous) e-expressions 52,067

# knock-on(headway) edges 41,258 # (integer) d-variables 42,107

# major transfer edges 154,95 # objective function terms for major flows 50,481

# model rows 165,298 # are functions of 1 s-variables 41,258

# model columns 111,576 # are functions of 2 s-variables 9223

# model non-zero elements 464,064 # function terms in post-optimisation evaluation 70,909

timing every next hour. In practice, a passenger could also take another train in the same direction without waiting a full

hour. We did not model this effect. This means that the expected transfer time in our model is conservatively somewhat

overestimated. Since missed transfers are penalised more in our model than in a model that would account for this effect,

our model will generate a timetable that has fewer missed transfers. In column 2, row 2, the net total expected passenger

travel time reduction is 6.03% for the approximate linear cost function evaluation and in row 3 it is still 3.81% for the actual

cost function evaluation. So we conclude that 3.81% is our best prediction for reduction of expected passenger time for all

passenger streams together. The average train passenger may expect this reduction amount in practice when the optimised

timetable is used.

Because the assumed amount of primary delays has an effect on the actual timetable that is generated, we then varied

these primary delay distributions. For each ride and dwell activity we still assumed the same negative exponential type

of primary delay distributions, but we varied them by increasing their average (expected value) of a% of each activity’s

minimum time. This average is given in column 1 of Table 5 for cases from a = 1% up to a = 20%.

Note that for each value of a, a different timetable will be generated. Also, a value of a = 20% may seem unrealistically

high, but this was chosen to show that our model can keep generating timetables at any value of a. At first, this may seem

surprising if one realises that in some places in Belgium, as in the bottleneck in Brussels-Central station, leftover capacity

is less than 20%. However, the constructed timetable for a = 20% will plan all trains in an hour, because these are hard

constraints of our model. In practice, there will be delays, and the higher the value of a, the more statistical cases there

will be that these trains will in practice not be able to all follow the prescribed timetable. However, these negative effects

are allowed by the model since the penalties on them are only soft penalties present in the objective function. It remains

therefore the responsibility of the user of our tool that not too many trains are forced to be planned. For example, the

UIC 406 norm can be utilised to restrict the capacity consumption of the input train set to our model. The fact that our

model allows scheduling of trains that consume up to 100% capacity has the advantage that it can also report total expected

passenger time of a schedule at 80% and 95% and is likely to report that the second schedule has a higher total expected

passenger time than the first because of its excessively higher knock-on delays. As such, our tool may be used to explore at

which point adding more trains to the schedule stops being advantageous for passengers and should be discouraged.

Columns 2 and 3 in Table 5 show the solver time and the MILP gap achieved. For all rows, to guarantee a solution in

a short time, the maximum desired MILP gap was set slightly above what was obtained as the gap of the first returned

solution in earlier trials. We ran Gurobi 5.6.3 on a HP Z210 Workstation Xeon CPU E31240 at 3.3 GHz with 16GB memory

running Microsoft Windows 7 Enterprise. In Table 6, we give some numbers that indicate the problem size that hold for

all these cases. This allows comparison to other published models. Our graph contains 196 hourly trains, 5078 ride edges,

4882 dwell edges, 15, 495 major transfer edges, 41, 258 knock-on(=headway) edges and 168 turn-around edges. Our model

contains 52, 067b and 52, 067s decision variables and 52, 067e expressions. It has 42, 107d integer decision variables, corre-

sponding to one for each secondary edge, and 50, 481 objective function terms for major flows of which 41, 258 terms are

functions of 1 s variable and 9223 are functions of 2 s variables. For final evaluation over all streams, 70, 909 function terms

are added. After pre-solve, which only takes about 5 s, our model contains 165, 298 rows, 111, 576 columns and 464, 064

non-zero elements.

Compared to the timetable currently in operation, our optimised timetables have quite some advantages. Firstly, they

respect all minimum ride- and dwell-times without exception. Secondly, they respect all headway time buffers of 3 min

between all train pairs on the same track section. Thirdly, our calculations show that, over all primary delay assumptions of

Table 5, the average chance of missing a transfer in the current timetable is at least 14.1% while in our optimised timetable

it is at most 3.44%. For the case a = 2% in Table 5, the expected passenger time is 3.81% lower than in the original schedule.

Further reduction of the maximum desired MILP gap below 79.2% did not give any new timetable solution within 12 h. The

decrease with 3.81% might seem small, but it should be noted that the fixed minimal ride and dwell times already consume

63.70% of the total passenger time in the original timetable and 66.23% in our optimised timetable.

There are at least three straightforward methods to further increase the reduction of 3.8%. Firstly, lowering the MIP gap

can be attempted by simply allowing more solver time. However, in many cases we did not obtain an additional 1%, even in

a few days of extra solver time. Secondly, differences of reduction percentages between evaluation over major flows versus

all flows can be reduced by optimising also over the smaller flows. However, when trying this by lowering fmin below 7, sets

with more than 50 trains did not return a solution within 12 h anymore. Thirdly, looking at the case a = 2%, columns 4 and

5 in Table 5, we see that we also still lose some of the 6.69% reduction achieved by the optimisation with the piecewise

linear cost functions compared to the 4.48% reduction if we evaluate over the curved cost functions. An approximation
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with more than 2 segments could reduce the difference between those percentages, probably at the cost of a higher solver

time. Alternatively, non-linear optimisation using the non-linear objective function directly, would completely eliminate the

mentioned percentage difference. We also expect more computation time here. However, we have not tried these methods

yet.

The different rows in Table 5 show the first feasible result obtained by Gurobi when a desired gap of 79.2% was set, for

all cases of a = 1% to a = 20%. When the assumed primary delays increase, our method, except for the case a = 18% where

it does marginally worse, is still able to generate a timetable with decreased expected passenger travel time compared to

the current one. However, roughly spoken, the larger the primary delays, the lower the obtained reduction for the optimised

timetable becomes. Column 7 shows that it decreases from 3.58% at a = 1% down to 0.58% at a = 20%. Computation times

to the first feasible result remain similar. In column 8 we see that the original timetable, which is of course the same in

all cases a = 1% up to a = 20%, has an increasing missed transfer probability from 13.6% up to 19.4%. That this probability

increases for any given timetable is only natural. However, in column 9, we see for our optimised timetables, which are

different ones for every value of a, that the missed transfer probability remains roughly the same, always between 1.91% and

3.44%. It is remarkable to see that our method can calculate a (different) timetable with consistently low missed transfer

percentages even for very large primary delays. This is due to the fact that these are also explicitly and proportionally

penalised in our transfer cost terms in our objective function. More generally, it reflects that the produced timetables are

optimised for the passengers, whatever the circumstances.

Since we always compare our optimised timetable to the original timetable, the impression may arise that we need a

feasible timetable to start from. This is not the case. In fact, the original timetable is not feasible, since for some trains, it

does not respect the minimum ride times in some places. Our optimised timetable does respect all those restrictions. In

that sense the requirements on the optimised timetable are higher and positive results for the optimised timetable are to

be seen as conservative.

7.3. Balance: less expected knock-on delay time versus more expected transfer time

As shown in Fig. 4, on the third row, right column, the total expected passenger time from original to optimised timetable

decreases by 3.81%. Fig. 4 also shows that the total expected knock-on delay time decreases while the expected transfer time

increases.

7.3.1. Less expected knock-on delay

Timetablers in Belgium, and many other European countries, construct a timetable with the goal to respect ‘macroscopic

headway minima’ of 3 min. They do not use more accurate microscopic headway information nor more accurate estimations

than those 3 min minima. So do we in our optimised macroscopic timetable. So our headway minima are exactly the same

and in that sense headway separations and associated knock-on time results are comparable.

In Fig. 5, we show histograms of headway durations for both the original (in the left half) and the optimised timetable (in

the right half) and in each case, both for the planned time domain, in terms of edges (top row) and in terms of passengers

(bottom row). One can see that, for the optimised timetable, in the right half of Fig. 5, no headways are shorter than the

imposed 3 min minimum. Equivalently, none are longer than T − 3 = 57 min. In the original timetable, there are a few

headways that are smaller than the minimal 3 min and some are larger than the 57 min maximum. There are 2 causes

of this. Firstly, between some train pairs, less headway is planned by the planners. Secondly, for a few trains, for a few

tracks, the original timetable violates minimum ride or dwell times. This happens precisely when timetablers are trying to

fix headway violations. Since in practice, these runtime violations will mean that the train will be delayed, we also adapt

the original timetable to reflect this, so arrival and departure times for the part of the train after the violation are increased

so that the minimum ride and dwell times are respected. This means that headway times are again decreased. From the top

row of Fig. 5, excluding the mentioned violations, it is evident that the average headway, if counted per edge, is always T/2.

This is the case because every headway edge e of length me + se also has an opposite headway edge of length T − (me + se).

Small deviations in the average are entirely due to the discretisation in the histogram construction. When weighing with

passenger numbers, we get a different situation. Indeed, we see that in our optimised timetable, many people experience a

potential knock-on delay associated with a second train of a train-pair that is separated by 7 min and also of T − 7 = 53 min.

Assigning big headways to trains riding before trains with many people on reduces total expected passenger knock-on time.

This is the case because the cost function, as can be seen in Fig. 1, is a decreasing function. Note also that on the second row

of Fig. 5, the optimised timetable, in the right column, indicates that fewer people will experience headways of between 3

and 6 min than in the original timetable. The first row, shows a less pronounced difference, and this can again be explained

by the optimised timetable paying more attention to trains with many passengers than with few passengers via the objective

function. This is consistent with the bar graphs shown in row 3, column 2 of Fig. 4.

7.3.2. More expected transfer time

Our optimisation currently still results in a timetable with more expected transfer time and to improve on this is a topic

for further study. So our software is already better at planning headways but humans are currently still better at planning

transfers. Important questions now are if the reduction in expected headway time is coupled to the gain in expected transfer
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Fig. 5. Planned headway times (minimum of 3 min + supplement) histograms, showing for each headway duration, for how many edges it occurs and how

many passengers experience the knock-on time associated with this headway duration.

time or not, if a timetable with lower expected time for both knock-ons and transfers exists and whether it can be found in

an automated way and how.

7.4. Balance: less journey time offsets more excess journey time

Spreading alternative trains between the same origin and destination station over the period of the timetable is advan-

tageous for some passengers. Indeed, consider passengers who cannot adapt their arrival time at their station of departure

to the departure time of a specific train of their choice, but arrive there at a uniformly distributed random time. Welding

(1957), Holroyd and Scraggs (1966) and Osuna and Newell (1972) derived that, for this type of passengers, the expected

waiting time until departure E(w) can be expressed as a function of the average vehicle planned heading time E(h) (over all

heading times Hi in the cyclic timetable period T) and the variation coefficient Cv(h) of the real time heading times:

E(w) = E(h)/2 ·
(
1 + Cv(h)2

)
. (36)

Here, h is the heading time distribution and E(h) is the expected heading time as it can be calculated from the planned

timetable as

E(h) =
N−1∑
i=0

pi · Hi =
N−1∑
i=0

(Hi/T ) · Hi =
N−1∑
i=0

H2
i /T, (37)

where pi is the probability of a passenger experiencing heading time Hi in period T. Cv(h) = σ (h)/μ(h) is the ratio of the

standard deviation over the mean, both of the heading time distribution in real time. Substitution of the right hand side of

Eq. (37) for E(h) in Eq. (36) and multiplication by the number of considered randomly arriving passengers f delivers

E( f · w) = f

2T

N−1∑
i=0

H2
i ·

(
1 + Cv(h)2

)
. (38)
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If we assume that there are no large deviations from the timetable, because it is robust, Cv(h) can be approximated by 0

and we get

E( f · w) ≈ f

2T

N−1∑
i=0

H2
i . (39)

It can be shown that E( f · w) is minimised by setting all Hi equal to T/N. This is why many PESP papers use these

equalities as hard constraints: the regularity constraints (Caprara et al., 2007; 2011b; Kroon et al., 2007; 2009; Liebchen,

2006; 2007; Peeters, 2003; Sparing et al., 2013). However, this can sometimes be overly strict, limiting other supplements

in the network to be unnecessarily constrained and as such avoiding optimality in terms of the whole network and its

expected total travel time for all passenger together.

So instead, for a given timetable and for a given set of alternative trains between stations O and D, we prefer to evaluate

the expected inter-departure waiting time at O for the f passengers going from O to D in the timetable period T via Eq. (39).

The inter-arrival waiting time at D is computed similarly. Together, inter-departure and inter-arrival time are called excess

journey time (Zhao et al., 2013). It must be mentioned that currently, our objective function represents just total expected

journey time for all passengers. This does not include the excess journey time yet and this addition would be most useful,

but our first experiments of adding it to the objective function during optimisation show it is too computationally expensive.

So for now, we will only evaluate this excess journey time for both the original and the optimised timetable.

Table 7 shows the computation of excess journey time for eleven different corridors between couples of neighbouring

main cities, in both directions. For example, each day 1086 passengers go from Gent Sint-Pieter to Brussel-Noord on one of

the three trains: IC:A (series 500–524), IC:E (series 1500–1525) and IR:i (series 3600–3624). IC stands for InterCity and IR

for InterRegio. In the original timetable, departure times of these trains are planned at 7:03:00, 7:15:00 and 7:24:00. This

leaves an interval of 39 min without a train departure which seems bad and gives E(w) = 14.55 min according to Eq. (39).

In the optimised timetable, the departure times are changed to 7:39:42, 7:51:12 and 7:57:18. This leaves an interval of

42.4 min without a train departure which seems even worse and leads to a somewhat larger E(w) = 16.39 min. So the ratio

of E(w) for the optimised timetable over E(w) for the original timetable is 16.39/14.55 = 1.13. At arrival in Brussel-Zuid,

the situation is similar, the E(w) ratio is 1.36. However, for the opposite lines, from Brussel-Zuid to Gent-Sint-Pieter, there is

an improvement from the original to the optimised timetable with ratios of 0.85 at departure and 0.78 at arrival. If, for this

OD-pair, we take all excess journey time in the optimised timetable and divide it by all excess journey time in the original

timetable, we get a factor 1.03. So excess journey time in the optimised timetable is increased with 3%. However, what

goes together with the temporal spreading is of course the duration of these three train paths from origin to destination

and back. We see that in the original timetable, the lines each took 31.0 min which has been changed in the optimised

timetable to 27.6, 27.0 and 17.7 min, so on average 24.1 min, which is a reduction of the average passenger journey time

of a factor 24.1/31.0 = 0.78. Similarly, in the opposite direction, we reduce passenger journey time with a factor 0.87. The

ratio of all journey time for this corridor is 0.82, so a reduction from original to optimised timetable of 18%. When we add

up all time for this corridor, we have to weigh the excess journey time by the fraction ‘r’ of passengers who cannot adapt to

the timetable departure times. When we assume r = 100%, total time on the original timetable is 119.4 min and total time

for the optimised timetable is 110.4, which means a reduction by a factor 110.4/119.4 = 0.92 or 8%. So, for this corridor,

in the optimised timetable, the excess journey time is 3% higher, but the time that is lost there for passengers is more

than compensated by the decrease in journey time of 18% of going form origin to destination station. For these 11 OD-pairs

together, the net time gained for passengers is 8%.

The situation is entirely similar for all other corridors shown in Table 7 giving a net reduction of 1–12% per OD-pair,

except for the OD-pairs (Namur, Brussel) (+3%), Oostende–Brugge (+2%) and (Enghien–Brussel) (+9%). The total reduction

of total time over these 11 OD-pairs, so weighing with number of passengers as well as spent time per OD-pair, is 4.2%,

assuming that r = 100%. Table 8 shows that for smaller values of ‘r’, the improvement is more significant, up to 15.6% for

r = 0. This increase in improvement is logical, since the excess journey time part that is not controlled yet by our objective

function is weighted by this factor ‘r’ while the journey time that is minimised via our objective function is not.

From the examples above, we can conclude that imposing regularity constraints has the potential drawback of increasing

journey time with more time than is gained by the reduction of excess journey time. This is true, even for train time

unweighted with passengers. This is why we want to avoid this approach.

7.5. Computation speed: the solution is returned quickly

As shown in Table 5, for any primary delay distributions assumed, our solver time stays below 2.5 h, be it with one

exception for the case a = 18% where it requires 7 h 21 min. Obviously, this is a big improvement compared to the current

manual timetable creation process that takes many human planners many months. Infrabel employs about 20 planners who

work on a new planning for 4–6 months. Apart from this, the main passenger operator, NMBS, also employs their planners

who also spend time on creating an initial planning, that is then passed on to Infrabel for verification and adaption. Infrabel

communicates their changes back to NMBS, and this process is iterated over a few times. Note however, that in the current

process, the planning time also includes checking and correcting routing and platforming on the microscopic level, which

our method does not currently do.
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Table 7

Evaluation of planned excess journey time (ejt) and comparison with journey time (jt) over OD pairs between neighbouring main cities. Change of both

measures and combined measures (with r=100%) from original to optimised timetables.

O and D Orig Orig Orig Orig Opt Opt Opt Opt Opt/orig Opt/orig

line 1 line 2 (line 3) E(.) line 1 line 2 (line 3) E(.) ratio E(.) Totals

1 IC:F:1725 IC:A:525 IC:F:1725 IC:A:525 20.32

Liege-Guil.[726] 7:08:00 7:00:00 23.1 7:19:48 7:51:12 15.0 0.65

Leuven[715] 8:01:00 7:34:00 15.2 8:05:42 8:19:42 19.3 1.27

E(jt) 53.0 34.0 43.5 45.9 28.5 37.2 0.86

1 IC:F:1700 IC:A:500 IC:F:1700 IC:A:500

Leuven[715] 7:59:00 7:26:00 15.2 7:33:18 7:49:30 18.2 1.20

Liege-Guil.[726] 8:54:00 8:00:00 24.6 8:35:24 8:20:54 19.0 0.77 0.92

E(jt) 55.0 34.0 44.5 62.1 31.4 46.8 1.05 0.95

166.0 155.4 0.94

2 IC:M:2425 IC:J:2125 IC:M:2425 IC:J:2125 559.78

Namur[895] 7:51:00 7:21:00 15.0 8:24:24 9:35:48 20.8 1.38

Brussel-=Zuid[221] 8:48:00 8:18:00 15.0 9:12:06 10:25:36 19.5 1.30

E(jt) 57.0 57.0 57.0 47.7 49.8 48.8 0.86

2 IC:M:2400 IC:J:2100 IC:M:2400 IC:J:2100

Brussel-=Zuid[221] 7:12:00 7:42:00 15.0 6:53:54 6:43:42 21.5 1.44

Namur[895] 8:09:00 8:39:00 15.0 7:44:30 7:31:36 19.9 1.32 1.36

E(jt) 57.0 57.0 57.0 50.6 47.9 49.3 0.86 0.86

174.0 179.7 1.03

3 IC:N:4500 IC:I:2000 IC:N:4500 IC:I:2000 504.49

Charleroi-S[259] 7:37:00 7:08:00 15.0 6:59:54 6:32:42 15.1 1.01

Brussel-=Zuid[220] 8:25:00 7:54:00 15.0 7:46:18 7:13:42 15.1 1.01

E(jt) 48.0 46.0 47.0 46.4 41.0 43.7 0.93

3 IC:N:4525 IC:I:2025 IC:N:4525 IC:I:2025

Brussel-=Zuid[220] 7:34:00 7:06:00 15.1 8:13:18 7:46:54 15.2 1.01

Charleroi-S[259] 8:18:00 7:52:00 15.3 8:55:54 8:25:36 15.0 0.98 1.00

E(jt) 44.0 46.0 45.0 42.6 38.7 40.7 0.90 0.92

152.4 144.8 0.95

4 IC:F:1700 IR:j:3700 IC:F:1700 IR:j:3700 336.47

Mons[848] 7:43:00 7:07:00 15.6 7:29:54 7:15:12 18.9 1.21

Brussel-=Zuid[220] 8:27:00 7:55:00 15.1 8:05:30 7:56:18 22.2 1.47

E(jt) 44.0 48.0 46.0 35.6 41.1 38.4 0.83

4 IC:F:1725 IR:j:3725 IC:F:1725 IR:j:3725

Brussel-=Zuid[220] 7:33 7:04:00 15.0 7:40:00 7:10:12 15.0 1.00

Mons[848] 8:16 7:52:00 15.6 8:14:24 7:55:54 17.2 1.10 1.20

E(jt) 43.0 48.0 45.5 34.4 45.7 40.1 0.88 0.86

152.8 151.7 0.99

5 IC:H:1900 IR:d:3100 IC:H:1900 IR:d:3100 329.87

Enghien[360] 7:33:00 7:07:00 15.3 7:16:30 7:07:18 22.2 1.45

Brussel-=Zuid[220] 7:53:00 7:30:00 15.8 7:35:06 7:25:54 22.2 1.40

E(jt) 20.0 23.0 21.5 18.6 18.6 18.6 0.87

5 IC:H:1925 IR:d:3125 IC:H:1925 IR:d:3125

Brussel-=Zuid[220] 7:07:00 7:30:00 15.8 6:31:06 7:01:12 15.0 0.95

Enghien[360] 7:26:00 7:53:00 15.2 6:52:42 7:20:24 15.1 1.00 1.20

E(jt) 19.0 23.0 21.0 21.6 19.2 20.4 0.97 0.92

104.6 113.5 1.09

6 IC:A:500 IC:E:1500 IR:i:3600 IC:A:500 IC:E:1500 IR:i:3600 1086.56

Gent Sint-Pieter[455] 7:24:00 7:03:00 7:15:00 14.6 7:51:12 7:39:42 7:57:18 16.4 1.13

Brussel-=Zuid[220] 7:55:00 7:34:00 7:46:00 14.6 8:18:48 8:06:42 8:15:00 19.8 1.36

E(jt) 31.0 31.0 31.0 31.0 27.6 27.0 17.7 24.1 0.78

6 IC:A:525 IC:E:1525 IR:i:3625 IC:A:525 IC:E:1525 IR:i:3625

Brussel-=Zuid[220] 7:05:00 7:29:00 7:14:00 13.4 7:49:06 8:19:00 8:05:54 11.3 0.85

Gent Sint-Pieter[455] 7:36:00 7:57:00 7:49:00 14.6 8:16:12 8:46:00 8:33:42 11.4 0.78 1.03

E(jt) 31.0 28.0 35.0 31.3 27.1 27.0 27.8 27.3 0.87 0.82

119.4 110.4 0.92

7 IC:C:700 IC:G:1800 IC:P:3025 IC:C:700 IC:G:1800 IC:P:3025 393.16

Gent Sint-Pieter[455] 7:16:00 7:47:00 7:05:00 11.7 7:32:54 7:06:54 6:57:42 11.5 0.98

Antwerpen-Centraal[37] 8:06:00 8:42:00 8:01:00 14.0 8:20:48 8:01:00 7:50:54 11.7 0.83

E(jt) 50.0 55.0 56.0 53.7 47.9 54.1 53.2 51.7 0.96

7 IC:C:725 IC:G:1825 IC:P:3000 IC:C:725 IC:G:1825 IC:P:3000

Antwerpen-Centraal[37] 7:52:00 7:18:00 7:59:00 13.1 6:29:30 6:35:42 6:48:54 15.5 1.19

Gent Sint-Pieter[455] 8:44:00 8:13:00 8:55:00 11.7 7:17:48 7:28:00 7:41:42 13.3 1.13 1.03

E(jt) 52.0 55.0 56.0 54.3 48.3 52.3 52.8 51.1 0.94 0.95

158.5 154.8 0.98

8 IC:G:1800 IC:C:700 IC:A:500 IC:G:1800 IC:C:700 IC:A:500 1177.78

Oostende[929] 7:02:00 7:12:00 7:43:00 11.9 6:29:00 6:58:54 6:17:18 11.4 0.96

Brugge[220] 7:18:00 7:27:00 7:54:00 11.6 6:41:06 7:15:42 6:29:18 12.7 1.10

E(jt) 16.0 15.0 11.0 14.0 12.1 16.8 12.0 13.6 0.97

(continued on next page)
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Table 7 (continued)

O and D Orig Orig Orig Orig Opt Opt Opt Opt Opt/orig Opt/orig

line 1 line 2 (line 3) E(.) line 1 line 2 (line 3) E(.) ratio E(.) Totals

8 IC:G:1825 IC:C:725 IC:A:525 IC:G:1825 IC:C:725 IC:A:525

Brugge[220] 7:44:00 7:30:00 7:03:00 10.7 7:53:30 7:12:48 7:43:54 11.9 1.11

Oostende[929] 7:58:00 7:44:00 7:17:00 10.7 8:06:00 7:25:24 7:56:12 11.8 1.11 1.07

E(jt) 14.0 14.0 14.0 14.0 12.5 12.6 12.3 12.5 0.89 0.93

72.8 74.0 1.02

9 IC:N:4525 IC:I:2025 IC:Q:2625 IC:N:4525 IC:I:2025 IC:Q:2625 654.61

Antwerpen-Centraal[37] 7:47:00 7:17:00 7:42:00 12.9 7:33:48 6:59:54 7:21:36 10.8 0.84

Mechelen[810] 8:07:00 7:37:00 8:03:00 13.3 7:48:42 7:22:30 7:37:24 12.4 0.94

E(jt) 20.0 20.0 21.0 20.3 14.9 22.6 15.8 17.8 0.87

9 IC:N:4500 IC:I:2000 IC:Q:2600 IC:N:4500 IC:I:2000 IC:Q:2600

Mechelen[810] 7:53:00 7:23:00 7:57:00 13.3 7:12:54 7:39:30 8:22:00 12.5 0.95

Antwerpen-Centraal[37] 8:13:00 7:43:00 8:18:00 12.9 7:27:42 7:55:18 8:37:48 12.2 0.94 0.92

E(jt) 20.0 20.0 21.0 20.3 14.8 15.8 15.8 15.5 0.76 0.82

93.0 81.2 0.87

10 IC:R:3425 IC:N:4525 IC:I:2025 IC:R:3425 IC:N:4525 IC:I:2025 525.90

Mechelen[810] 7:57:00 7:10:00 7:40:00 11.3 7:00:00 7:49:42 7:24:30 11.2 0.99

Brussel-=Noord[221] 8:13:00 7:23:00 7:55:00 12.1 7:14:24 8:01:36 7:35:48 10.7 0.89

E(jt) 16.0 13.0 15.0 14.7 14.4 11.9 11.3 12.5 0.85

10 IC:R:3400 IC:N:4500 IC:I:2000 IC:R:3400 IC:N:4500 IC:I:2000

Brussel-=Noord[221] 7:47:00 7:37:00 7:05:00 12.1 7:15:54 7:58:36 7:25:18 12.5 1.03

Mechelen[810] 8:03:00 7:50:00 7:20:00 11.3 7:30:42 8:10:48 7:36:06 13.6 1.20 1.03

E(jt) 16.0 13.0 15.0 14.7 14.8 12.2 10.8 12.6 0.86 0.86

76.1 73.1 0.96

11 IC:G:1800 IC:A:500 IC:E:1500 IC:G:1800 IC:A:500 IC:E:1500 1169.78

Brugge[210] 7:18:00 7:59:00 7:36:00 10.1 6:42:12 7:31:24 7:18:42 13.4 1.33

Gent Sint-Pieter[455] 7:45:00 8:22:00 8:00:00 10.3 7:05:54 7:50:12 7:37:42 11.8 1.14

E(jt) 27.0 23.0 24.0 24.7 23.7 18.8 19.0 20.5 0.83

11 IC:G:1825 IC:A:525 IC:E:1525 IC:G:1825 IC:A:525 IC:E:1525

Gent Sint-Pieter[455] 7:42:00 7:01:00 7:24:00 10.1 7:29:06 7:17:18 7:48:00 11.3 1.12

Brugge[210] 8:15:00 7:38:00 8:00:00 10.3 7:52:30 7:36:12 8:06:30 11.2 1.09 1.17

E(jt) 33.0 37.0 36.0 35.3 23.4 18.9 18.5 20.3 0.57 0.68

100.9 88.5 0.88

Table 8

Reduction of expected passenger time, including both journey time and excess journey time for

varying fractions (r%) of passengers not adapting their arrival time at station of departure to train

departure times in the timetable.

r (%) 0 10 20 30 40 50 60 70 80 90 100

Reduction (%) 15.6 13.6 12.0 10.6 9.3 8.2 7.2 6.4 5.6 4.9 4.2

8. Validation and check of applicability by simulation

8.1. Validation by macroscopic simulation

To validate the robustness of our timetable we simulated both the original timetable and the optimised timetable with

the macroscopic simulator OnTime of TrafIT GmbH and VIA Consulting & Development GmbH. OnTime performs delay prop-

agation calculations with given primary delays, minimal run times, minimal dwell times, minimal headway times at sections,

junctions and stations. It can also take into account train priorities, minimal turn-around times and a list of transfers with

synchronisation times. It does not take into account passenger numbers. This means that all reported measures are train re-

lated. OnTime reports train punctuality in various forms. In Fig. 6(a)–(n), the horizontal axis represents the time of the day

and the vertical axis represents the number of events. An event is a departure or arrival of a train. Green pixels represent

events that occur with a delay of less than 5 min compared to its planned time. Red pixels represent events that occur 5

or more minutes later than planned. Dark red pixels represent events that occur more delayed than events represented by

light red pixels. Fig. 6(a) and (b) shows that without primary delays, there is no accumulated remaining delay in the sys-

tem. We know that the original timetable has some run time violations, implying negative supplements, which inject delay.

Since Fig. 6(a) and (b) shows that there is no remaining delay, this implies that the original timetable is relatively stable,

even with these negative supplements. This means that this timetable still can absorb these delays by compensating posi-

tive supplements at later activities of the same train. Note however that this result does not include any possible headway

issues yet. Fig. 6(c) and (d) shows that even with some primary delays, the buffers present in the system can absorb them

and no serious delays are accumulated. Only when the necessary headway minimum times are imposed, in Fig. 6(e)–(j), we

see that some red pixels result, more so in the original than in the optimised timetable. This indicates accumulated delays.
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Fig. 6. OnTime event punctuality analysis reports. The horizontal axis is the time of the day. The vertical axis is the amount of train events, where green

pixels are on time events, light red pixels are slightly delayed events and dark red pixels are more delayed events. Passenger numbers are not considered

in these graphs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Especially the section headway minima are causing delays especially in the original timetable. This indicates that on top of

these minima, larger buffers exists in the optimised than in the original timetable in places where it matters most. The opti-

mised timetable can ‘absorb’ these problems better. Fig. 6(k) and(l) shows no significant change in accumulated delays when

turn-around minima are imposed. Fig. 6(m) shows that in the original timetable, when also transfers are considered, some

more red pixels are added to the graph while for Fig. 6(n) no extra red pixels seem to be generated. Note that punctuality

of all transfers are considered without any weighing by passenger numbers.

Fig. 7(a)–(f) shows the punctuality analysis for a whole day geographically in terms of the probability of being less than

0 min late in an approaching activity. This includes transfer punctuality. Note that passenger numbers are not considered in

these graphs. In these figures, ‘red/green x%’ means that a green dot will appear if for all x% smallest delays, the train still

arrives in time. A light green, white, light red and dark red dot mean that this is almost to not at all the case. From figures

for all values of x: 50, 80, 90, the punctuality for the optimised timetable is clearly better than for the original one. Indeed,

the optimised timetable compares favourable to the original timetable for x = 50 in that Fig. 7(b) has the only red dot in

Brussels-Central and the only non-dark green dots between Antwerpen and Puurs, while Fig. 7(a) has quite some red dots

at some stations at the Belgian boundaries and also a long string of white or only light green dots along the axis between

Luxembourg and Brussels as well as between De Panne and Deinze. When requiring 80% up to 90% of trains to arrive on

time in Fig. 7(c)–(f), of course more red dots appear for both timetables. However, on average over all locations, the situation

is consistently and significantly better for the optimised timetable than for the original timetable. It should also be noted

that a timetable that has truly minimal expected passenger time may still generate some red dots in an OnTime report

for say x%=99% because this means that only with a probability of 1% trains will be late. It may not be worth to provide
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Fig. 7. OnTime GeoView 0’:00” late probability analysis for a full day, with consideration of transfers. For red/green x%, a red dot means that in that

location, less than x% of all trains arrives in time. Punctuality for the optimised timetable is clearly better than for the original one. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

a buffer against the delays causing this since this may make the timetable unnecessarily inefficient in 99% of the other

cases. Our objective function makes this trade-off between robustness and efficiency for passengers. Note that Fig. 7(a)–(f)

shows lateness as defined with zero minutes delay, because that is the threshold at which passengers start to experience

delays. Train companies usually report punctuality numbers based on lateness definitions of 6 min late (in Belgium and

Switzerland) or 3 min late (in The Netherlands).

We conclude that our OnTime macroscopic simulations and reports confirm that more punctuality and so more robust-

ness against primary and secondary delays is present in the optimised timetable than in the original timetable. This ro-
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bustness was achieved by minimisation of our objective function of expected passenger time. Note that our optimisation

assumed an average of primary delay distribution of a = 2%. With this assumption, we were able to generate a timetable

that is more punctual according to OnTime simulations that use standard but train specific Infrabel primary delay distribu-

tions. This means that this a% assumption led to a timetable with both lower expected passenger journey time as well as

better punctuality. When increasing the value of ‘a’, a generated timetable with higher punctuality against the same primary

delays is expected, but expected passenger journey time may rise.

8.2. Check of applicability by microscopic simulation

On a macroscopic level, we have decreased expected passenger journey time by creating a new timetable and validated

this with a macroscopic simulator OnTime. We now want to check that we do not lose these benefits if we simulate the

timetable on a microscopic level. We use the microscopic simulator LUKS of VIA Consulting & Development GmbH. LUKS

performs delay propagation calculations on a microscopic level. It takes much more calculation time than OnTime for the

same area and the microscopic routing of the trains is not available for many areas. Therefore, we are forced to restrict

the simulations to a smaller area where the routings are known. The most relevant area is the bottleneck of train traffic

in Belgium: the axis between Brussels–Kapelle, Brussels-Central and Brussels-Congres, because there, the most trains per

track occur. This means that train knock-on effects will be the largest in this area. Additionally, this is also the area with

the most passengers. Because of this, the timetable of this area affects the most passengers and requires the most attention

in timetable planning.

In each of these 3 stations, only six tracks exist, all of them in underground tunnels. This means that it would be hard

and expensive to increase the number of tracks in this area and so it will remain a bottleneck in the Belgian train net-

work. In each of these 3 stations, for a chosen line, there is only one platform choice possible and also only one routing

variant possible. This means that the platform and routing assignment plan is necessarily the same for the original and the

optimised timetable. So the comparison of the delay propagation of the two timetables is fair and cannot be biased by a

different platform and routing plan.

First of all, LUKS detected that the original timetable contained one conflict on the microscopic level but declared the op-

timised timetable conflict-free. Secondly, for primary delays that Infrabel deems typical, 100 simulations with LUKS of both

timetables revealed that the average ratio of the realised train time to planned train time is 1.6 for the original timetable but

only 1.25 for the optimised timetable. We conclude that, by separating trains on a macroscopic level, such that passengers

benefit most in terms of low expected journey times, we generated a timetable that also has fewer punctuality issues – at

least for the tunnel-tracks in Brussels – than the current one. We see no reason why this would not be the case in other

areas.

9. Conclusions and further work

This paper has four main contributions. Firstly, our MILP model avoids infeasibility issues caused by artificial upper

bounds on supplements as can be the case in other models. In practice our model has always returned a feasible solution.

This assumes that the number of trains being scheduled does not exceed the available capacity, since naturally, all our gen-

erated timetables have to and do respect all minimal ride, dwell, transfer, headway and turn-around time rules. Secondly,

our objective function results in timetables with minimised expected passenger time, meaning the total passenger travel

time, including their ride, dwell and transfer activities, as well as the typical primary delays and their consequential knock-

on delays in practice. This means that, on a macroscopic level, our generated timetables are both efficient and robust by

construction. Thirdly, this timetable is also quickly generated. Computation times for the whole Belgian timetable are only

about two hours. Fourthly, supposing primary delay distributions with an average of 2% of the minimal time of their corre-

sponding activities, our improved timetable reduced expected passenger time for all passenger streams by 3.8% compared

to the current one. We also show that the generated timetable is more punctual than the original timetable.

From our extensive modelling efforts, we also learned that while restricting the search space and using curtailed objec-

tive functions are the easy way to reduce solver times, searching the full solution space and defining an all-encompassing

objective function can lead to more desirable results: a lowered risk on infeasibility, optimality and even satisfactory solver

times. Our model and software tool is now available within Infrabel and we believe that together with DONS and CADANS

at the Dutch railway operator NS and TAKT at the German railway operator DB, these are the only tools that are available

to railway timetable practitioners that are capable to automatically generate a national timetable. In summary, this paper

demonstrates that we added two important missing steps to make cyclic timetabling for passengers really useable in prac-

tice: (i) the addition of the objective function of expected passenger time in practice and (ii) the reduction of computation

time by addition of well chosen additional constraints.

We envision some further useful extensions of our work. (i) The macroscopic timetable should be microscopically veri-

fied. In some stations the guaranteed 3 min between train-pairs on open lines may not be enough to also guarantee that

all trains can be routed and platformed. Hopefully this can be done with small adaptations to train arrival and/or departure

times. (ii) In our timetabling process we adapted the timetable to the expected passenger flows. Once our timetable would

be put in practice, passengers will reconsider which route they will take. To obtain an estimate of expected passenger time
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in practice that also considers this effect, one could add another passenger reflow pass after the described timetabling pro-

cess and report expected passenger time again after that. A higher reduction percentage than the currently reported 3.81%

is then expected, so this road should be taken. (iii) The calibration of the primary delay distributions with the total real

delays measured in practice would give an even more fine-tuned timetable. (iv) Also refining the minimum transfer times,

which are currently all set to 3 min, differentiating them by station or even – if likely platform assignments are known –

by platform to platform walking time seems a task worth trying to make the presented model even more realistic. (v) The

concern of spreading in time of alternative trains between the same source and destination has not been modelled yet. As

for knock-on delays, this could be done as a soft constraint by addition of objective function terms, rather than the usual

hard frequency-arc constraint approach.
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Appendix A. Proof: our supplement upper bounds never cause infeasibilities.

Unlike other PESP models we only restrict our supplements to be smaller than the timetable period T, formaly, ∀e ∈ E =
E′ ∪ E′′ : se < T . We claim that this never introduces new infeasibilities compared to the model without these constraints. A

proof is given here.

Let the model M1 be the model without any upper bounds on any supplement se. Let the model M2 be the model with

an upper bound on any supplement s, so M2 is equal to the model M1 with only the additional constraints: ∀e ∈ E: s <

T. Suppose that M1 is feasible. We then execute the following algorithm to construct a solution to M2 from the solution to

M1.

• Step 1: modulo T compression: For any intra-train constraint, so ∀e ∈ E′ : be + me + s = ee, we call the solution to M1 for

a specific e ∈ E′, (be, 1, se, 1, ee, 1) for which se, 1 < T not necessarily holds. Given that se, 1 ≥ 0, we can construct a

solution to M2 as (be,2, se,2, ee,2) = (be,1, se,1 − ie · T, ee,1 − ie · T ), where the integer ie is chosen so that 0 ≤ se, 2 < T.

Said otherwise se,2 = se,1 mod T, so this is always possible. This solution can be applied for every e ∈ E′, performed

train per train (independently), and in the chronological order of (ride, dwell) edges of a train. When an edge e is

compressed by an amount ie · T, for all succeeding edges e of that same train, be, 1 and ee, 1 are also decremented by

ie · T. (Note that this maintains the satisfaction of the constraint: be,1 + me + se,1 = ee,1.) Afterwards (be,2, se,2, ee,2) =
(be,1, se,1 − ie · T, ee,1 − ie · T ) is applied on those succeeding edges. This is always possible since the set E’ contains no

cycles. Note that also for the minimum scheduling hour hlo · T, ∀e ∈ E′: hlo · T ≤ be, 2 ≤ ee, 2 still holds, since the

beginning time bet,0,2 = bet,0,1 of the first edge et, 0 of each train t has not been decreased and all other times be, 2, ee, 2

of that train t have not been decremented below bet,0,2. Since no single time be or ee has been increased, it also still

holds that ∀e ∈ E′: be, 2 ≤ ee, 2 ≤ hhi · T. So we conclude that constraints for all intra-train edges in M2 as well as the

boundary constraints to do with hlo and hhi are satisfied.
• Step 2: inter-train constraint matching: For any inter-train constraint, so ∀e ∈ E′′: be + me + s + de · T = ee, we call the

original solution to M1 for a specific e ∈ E′′, (be, 1, se, 1, de, 1, ee, 1) for which s1 < T not necessarily holds. Since step 1

above was carried out, be, 2 and ee, 2 can now be different from be, 1 and ee, 1. Indeed, after step 1, in general (be,2, ee,2) =
(be,1 − i · T, ee,1, − j · T ) holds, with 0 ≤ i ≤ j and be, 2 ≤ ee, 2. So the originally satisfied constraint from M1, (be,1) + me +
se,1 + de,1 · T = (ee,1), can be converted to (be,2 + i · T ) + me + se,1 + de,1 · T = (ee,2 + j · T ) or be,2 + me + se,1 + (de,1 + i −
j) · T = ee,2. By setting se,2 = se,1 − k · T with k ≥ 0 and 0 ≤ se, 2 < T, so se,2 = se,1 mod T, we get be,2 + me + (se,2 +
k · T ) + (de,1 + i − j) · T = ee,2 or be,2 + me + se,2 + (de,1 + i − j + k) · T = ee,2. Next, we set de,2 = (de,1 + i − j + k) · T such

that be,2 + me + se,2 + de,2 · T = ee,2 results, which delivers a solution (be, 2, se, 2, de, 2, ee, 2) for any edge e ∈ E′′ for M2.

Note that i − j + k can be both negative or positive so de, 2 can be smaller, equal or larger than de, 1, which initially can

raise the concern that a larger range for the de variables would be needed for M2 compared to for M1 to be able to

guarantee feasibility. However, since step 2 does not change any values be, 2 or ee, 2 compared to step 1, all these values

are still in the [hlo · T, hhi · T] window as proven in step 1. Consequently, they are still at most (hhi − hlo) · T apart. This

means that the range of de can be kept the same for M2 as for M1, more specifically: ∀e ∈ E′′ : de ∈ [hlo − hhi, hhi − hlo].

As for the cycle constraints, these are linear combinations of the other constraints, so if the other constraints will not

cause infeasibilities, neither will the cycle constraints.

Appendix B. Conjecture: activity lower bounds are the only potential causes of infeasibilities.

It is clear that the following situations cause our model to become infeasible.
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1. Lower bounds on ride and dwell times per train: When the sum of the minima of subsequent ride and dwell actions of

a train sum up to S and when the time window [hlo · T, hhi · T] to schedule trains in has length (hhi − hlo) · T < S, the

model will be infeasible. These problems are caused by lack of time.

2. Lower bounds on headway times per track: When more than 20 trains are required to be planned on a single infrastructure

resource in 60 min and also a lower bound of 3 minheadway time is imposed, one is obviously asking the impossible.

The model will then be infeasible. These problems are caused by lack of capacity which can also be seen as lack of space.

We think that there are no other causes of infeasibilities in our model. Note that the manually created timetable that we

read in should also avoid these two causes of infeasibilities. If this is the case, a model will be created that has none of these

supplement lower bound infeasibility issues either. Firstly, to avoid the infeasibilities of type 1, we derive the makespan of

the original timetable, round it up to an integer multiple of hours and then add one extra hour to it. This forms the time

window in which we try to schedule all trains for the optimised timetable. Secondly, in practice, we see that in the original

timetables, no more than 17 trains per hour have been planned on any track, as such avoiding infeasibilities of type 2. This

means that we will not have infeasibilities of that type in our model either. So, the guarantee of our model being protected

against infeasibilities of type 1 and type 2 is controlled by the ‘sensibility’ of the original input timetable. More particularly,

in the original timetable, the sum of ride, dwell minima for every train should be at most the timetable’s makespan and

the sum of the headway minima should be at most the timetable’s period. One could check for these conditions and report

type 1 and type 2 infeasibilities even before trying to solve the model. If there are indeed no other infeasibility problems

apart from type 1 and 2, this would then mean that the model only has to be solved when feasibility is guaranteed.
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2.5 Towards a Better Train Timetable for Denmark
Reducing Total Expected Passenger Time

Full paper presented at Conference on Advanced Systems in Public Transport
(CASPT), Rotterdam, The Netherlands, 19-23 July 2015

The method and model as laid out in section 2.4 and applied there on the
case of all 196 hourly passenger trains for Belgium is applied in this section
to all 88 hourly passenger trains in Denmark. We also use the same passenger
reflowing technique as described in section 2.1 and the same objective function
as described in sections 2.2 and 2.3. Banedanmark also assumes the same
macroscopic 3 minute rule of thumb for minimal headway time.

We only need to schedule half of the trains and the computation time to solve
the model is also roughly halved. It goes down to 1 hour. The results also
look similar to the Belgian case. We are again assuming 2% of the minimum
times of ride, dwell and transfers for the average of the negative exponential
primary delays distributions on these activities. Under this assumption, the
optimised timetable reduces the expected passenger time by 2.90% compared
to the original timetable made manually at Banedanmark. Under the same
primary delay assumptions, the average probability of a missed transfer per
passenger goes down from 11.34% in the original timetable to 2.45% in the
optimised timetable. Again, the total time spent in practice in all transfers is
smaller in the original timetable, even though the total expected journey time
in practice is smaller in the optimised timetable.

This paper shows that our timetabling methodology is general enough to also
be applied to other countries than Belgium, as long as they desire to construct
a cyclical timetable with the objective of minimising the passenger travel time
in practice.

Note that similarly to our earlier optimisation of the Belgian timetable, the
excess journey time, which is related to spreading of alternative trains, was not
controlled by the objective function yet. This is the topic of a later paper in
section 2.6.
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1 Introduction

This paper’s topic is the automatic construction of a cyclic, macroscopic rail-
way timetable. The word cyclic means that there is a timetable period, here 1
hour, by which every train repeats itself. The word macroscopic means that a
standard value for the minimum headway times of 3 minutes is assumed and
inside stations, the microscopic headway constraints that arise from the block
sections staircase model are not enforced. We also assume that line planning
is fixed including the halting pattern for each line. This means that for each
train, for each station, only the arrival and departure time are to be deter-
mined. In other words, only ride and dwell supplements are to be chosen. Of
course, many solutions exists, but these supplements have to be chosen so
that the resulting timetable possesses some desirable proporties. We previ-
ously constructed a Periodic Event Scheduling Problem (PESP) based model
which has as objective function: the total expected passenger journey time in
practice over all passengers (Sels et al, 2015b). In Dewilde et al (2013), the au-
thors conclude that, unlike to what is the case for some alternative definitions
of robustness, this objective function is a practical method to obtain robust-
ness and that the obtained robustness is ideal for passengers. Our objective
function integrates and makes a trade-off between efficiency and robustness.
It penalises supplements that are so big that they would lower efficiency too
much but also penalise supplements that are so small that robustness would
be compromised.

In Sels et al (2015b), this MILP model is generated for the set of all 196
hourly trains in Belgium. The main results were that a timetable, automati-
cally generated in about 2 hours, saves about 3.8% of total expected passen-
ger journey time. This timetable also significantly reduced the percentage of
missed transfers from 13.9% to 2.6%. To study how generally applicable this
model is to practice, we now also test it on the set of all 88 hourly trains using
Banedanmark’s infrastructure.

2 Timetabling Methodology and Assumptions

Our timetabling approach consists of the basic constraints of the popular PESP
model (Serafini and Ukovich, 1989; Schrijver and Steenbeek, 1993; Nachtigall,
1996; Goverde, 1998a,b; Peeters, 2003; Kroon et al, 2007; Liebchen, 2007;
Kroon et al, 2009; Caprara et al, 2011; Sparing et al, 2013) using a standard
event activity network. We impose its classic constraints enforcing minimal
ride times and minimal dwell times. As described in detail in Sels et al (2011),
we automatically construct all potential transfers. By this, we mean that if
two trains stop in the same station, a transfer edge will be added between the
arrival time of the feeder train and the departure time of the target train. Cur-
rently, a minimum of 3 minutes is assumed for each transfer. Headway edges
and the respective minimum headway time constraints are also automatically
constructed between entry times of each pair of trains that enter the same
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infrastructure resource and similarly also between all pairs of exit times. For
single track sections, between each leaving and each entering train, a similar
headway time constraint is imposed. The headway minimum time assumed
on this macroscopic level is 3 minutes. This summarises all hard constraints
in our model. For more details, we refer to Sels et al (2015b), where all these
mandatory constraints and some supplementary ones that are merely intended
to speed up computation are discussed.

We will also only give a qualitative description of our objective function
here, as the main focus of this paper is the application of our timetabling
model on the Danish train network. As derived formally in detail in Sels et al
(2013b) and Sels et al (2013a), our objective function consists of the sum
of the expected passenger time for each edge (action) in the event activity
graph G(V,E) that corresponds to a passenger activity. So, for each ride,
dwell and transfer edge we model an expected passenger time. We express this
expected passenger time of an edge as a function of its minimum time and
its added supplement time. The shape of this function mainly depends on the
expected primary delay distribution and consequently, so does the value of the
supplement that should be ideally added. The scale of this function depends
on the number of passengers involved. This indicates the relative importance
of the expected passenger time of one edge compared to that of another and
these are balanced by the objective function.

For the primary delays, as do Schwanhäußer (1974); Meng (1991); Ferreira
and Higgins (1996); Goverde (1998a); Vansteenwegen and Van Oudheusden
(2006); Kroon et al (2006) and Yuan (2006), we assume negative exponential
distributions. These distributions have an average (=expected value) that can
be set to a certain fixed percentage ‘a’ of the minimum time for that action.
This average can in theory be determined by inspecting logs of trains as they
are running in the current timetable. This has been described by Goverde and
Hansen (2000) and Daamen et al (2009) for the Dutch and by Labermeier
(2013) for the Swiss infrastructure. So, for example, if the minimum time of a
ride action is 5 minutes from one stop to the next, if one sets ‘a’ to 10%, the
average primary delay on that ride action is assumed to be 0.5 minutes. By
this one parameter, the negative exponential distribution p(d) of the primary
delay d is unambiguously defined, as p(d) = exp(−d/a)/a. For now, we assume
the same value of ‘a’ for all ride, dwell and transfer edges, for all trains and
for all tracks. The value of ‘a’ is typically chosen in the range of 1% to 5%
(Goverde, 1998a).

Depending on the action type that passengers participate in, the expected
passenger time is another type of function of the supplements added to these
actions. We now discuss these types of passengers and associate cost functions.

For through passengers, experiencing a ride and subsequent dwell action,
the expected time, as a function of the added ride and dwell supplements s,
as can be seen in the example in figure 1, is almost the function f(s) = P · s,
with P equal to the number of participating passengers. This is logical, since
for whatever supplement is added to a ride or dwell action, the through pas-
sengers just have to sit it through. So high values of s are not beneficial to
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Fig. 1 Through and arriving passenger expected time as a function of the chosen supple-
ment. All time is given in in 6 second multiples.

these passengers. At low values of s, the slope of f(s) is a little flatter because
small delays occur more often than large delays and so, waiting for the end of
s takes a smaller fraction of time s on average than for larger supplements.
The larger the supplement, the smaller the fraction that common delay sizes
form compared to it. So for larger supplements this secondary ’curving effect’
diminishes. The situation is entirely similar for arriving passengers, experienc-
ing a ride plus sink action, and so the cost function for arriving passengers
is also similar to the one shown in figure 1. Note that the green vertical line
shows that an 8 minute supplement was chosen by the solver. A supplement
equal to 0 minutes would be locally optimal, but other hard constraints like
headway constraints may forbid this here.

Note that all cost functions in figures 1, 2, 3 and 4 show an actual expected
time cost function in green that is used in evaluation and a piecewise linear
approximation of it in red which is used in linear optimisation. The green ver-
tical line indicates an example of an actual chosen supplement. Its associated
expected passenger time cost can then also easily be read from the graph. In
each case, we see that the linearisation error is relatively small.

To departing passengers, experiencing a source plus ride action, it is ben-
eficial when the train they get onto departs as scheduled. This is ensured by
providing enough time buffers against primary delay on this train on the sec-
tions this train traverses before these departing passengers embark on it. The
curve in figure 2 shows indeed that the selection of a larger buffer on the
previous sections for this train statistically leads to lower expected delay for
departing passengers than a lower buffer. However, it also demonstrates that
a supplement larger than 10 minutes does not significantly increase the buffer-
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Fig. 2 Departing passenger expected time as a function of the chosen supplement. All time
is given in in 6 second multiples

ing effect compared to a 10 minute supplement. The green vertical line shows
that the MIP solver decided to set the supplement to 8 minutes. This is not
the local minimum, 60 minutes, but due to competition with other terms in
the objective function this could be a reasonable choice. The value 8 minutes
is the absis of the crossing of the two red segments which meet on the green
curve so the linearisation error is 0 here.

For passengers who are changing between trains, experiencing a ride plus
transfer action, we model an expected transfer time that depends on the cho-
sen supplement for this transfer, on top of the minimum of 3 minutes. If the
supplement is low, the probability that the transfer is missed is high. If the
transfer is missed, we conservatively assume a penalty waiting time of the
timetable period, here 1 hour. If the supplement is high, the probability of
missing the transfer is low, but the transfer passenger will always have to wait
until the supplement time has elapsed. The above means that the expected
passenger time for a transfer is a U-shaped function of the supplement. An
example of a transfer cost curve is given in figure 3. So there is a trade-off
and a locally optimal value for the transfer supplement somewhere between 0
and 60 minutes. This supplement range is very broad and naturally very large
supplements will rarely be added. Exceptionally, like when a transfer is only
taken by very few people, and a small supplement on this transfer would mean
a large supplement on an action with more people, a very large supplement on
this less important transfer can occur though. The allowed range for supple-
ments is defined as 0 to 60 minutes to avoid infeasibility problems. Note that a
transferring passenger can be seen as the combination of both an arriving and
a departing passenger and this is reflected in the cost function in figure 3 being
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Fig. 3 Transfer passenger expected time as a function of the chosen supplement. All time
is given in in 6 second multiples

the addition of the cost functions of figures 1 and 2. The vertical green line in
figure 3 shows that the MIP solver was able to select a supplement equal to
4.5 minutes which minimises the local linearised expected transfer time. This
also coincides with the minimum of the green curve.

As for secondary delays, or knock-on delays, our model already contains
the graph edges associated to these. Indeed, they are the same edges as the
headway edges, temporally separating pairs of trains that use the same in-
frastructure resource. So for each headway edge, we also add a term in the
objective function that represents the knock-on time or secondary delay that
passengers on the second train may experience in case the first train is delayed.
In our model, as derived in Sels et al (2013a), this time depends on the delay
distributions of both trains and on the number of passengers on the second
train. Obviously, the total knock-on time is proportional to the number of
passengers on the second train. Also, the expected knock-on passenger time
forms a decreasing function of the train separating supplement si,j , since the
higher the time separation between two trains i and j, the lower the expected
knock-on delay. Figure 4 shows an example of a knock-on delay cost function.
The horizontal axis shows the supplement between 0 and 60 minutes and on
the vertical axis the expected knock-on time is given. Note that our MIP model
optimises over all possible train orders. This means that when N trains use a
common resource, for all train pairs, cyclically, N(N − 1) knock-on terms are
added to the objective function. Knock-on costs are a major determinant for
the optimal train orders, but major transfers will also play a role in this.

We could also consider the expected waiting time that passengers expe-
rience at their station of departure. This depends on the spreading between
alternative trains in the timetable. In this paper we did not add these terms
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Fig. 4 Shape of expected knock-on delay as a function of the chosen supplement. T is the
timetable period, which is 60 minutes here. The vertical axis has no specific scale here.

to the objective function since our model developed to estimate this expected
time does not scale well yet to networks with many trains (Sels et al, 2015a).

All types of objective function time terms described are seen as objective
time. No subjective weights are added. This concludes our qualitative dis-
cussion of the objective function of our PESP MILP model representing the
timetabling problem. In the next section, we apply our model to the train
network of all passenger trains in Denmark and show the results.

3 Application to the Danish Railway System

Our complete method first constructs an event activity graph representing the
train service network. Then, we route passengers over this graph to derive local
passenger flow numbers for every ride, dwell and transfer action in this graph.
We subsequently reschedule trains, deriving ideal arrival and departure times
for all trains in all stations. We report results for each of these three phases.

3.1 Constructing the Event Activity Graph

For this project, Banedanmark started from the infrastructure they manage.
This is 1956km or 79.5% of the the total of 2636km of railway track in Den-
mark. These tracks are visualised in figure 5. Subsequently, for an ’average’
Wednesday in 2013, all trains running on this infrastructure were collected
and slightly adapted, so that the timetable became exactly periodical with one
hour. One representative hour for this network contains 84 passenger trains
and 4 freight trains. Note that we do not schedule the suburban trains on the
infrastructure of S-bane. The S-bane operates in the København area and is
completely independent of the rest of the network, so it has no effect on our
case. Some private operators run trains that briefly also use the Banedanmark
infrastructure in just three places. These trains have not been modelled but
are expected to have little influence on our main results. Freight trains were
defined in the input only on sections where Banedanmark knows that there is
a capacity bottleneck. For other sections, no freight trains were defined. It is
assumed that they can be fitted between the scheduled passenger trains later.

We then generated the event activity network that corresponds to this
service. This graph contains 88 trains, 264 stations, 3346 vertices and 9918
edges. The number of ride edges is 1541. Table 1 shows more problem instance
statistics for this Danish event activity network.
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Fig. 5 Danish train infrastructure lines managed by Banedanmark

3.2 Routing: Reflowing

Now that the basic service graph is constructed, we mimmick the process were
passengers decide what train to take if they go from an origin station (O)
to a destination station (D). The number of commuters per day is 394377.
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Table 1 Graph and timetable MIP problem instance statistics

# ride edges = 1533
# dwell edges = 1445

# turn-around edges = 0
# knock-on(headway) edges = 13596

# major transfer edges = 4908
# model rows = 47335

# model columns = 32057
# model non-zero elements = 140516

# objective function terms for major flows = 16652
# objective function terms in post-optimisation evaluation = 21522

The morning peak OD matrix of these commuters is used to route passengers
over this train service network, according to the routing algorithm described
in Sels et al (2011). This is a modified Dijkstra algorithm implemented in
C++. For efficiency, the modified Dijkstra algorithm was parallellised both on
the core-level (using openMP, 2013) and the machine-level (using openMPI,
2014). For every OD-pair in the OD matrix, the best routings from O to D are
calculated independently. First the modified Dijkstra algorithm is run to find
the route with the lowest planned time, based only on the sum of minima for
its ride and dwell actions. To avoid too many transfers in a route we penalise
the choice of a transfer with 15 minutes. Note that the actual duration of
a transfer is not known yet at this point. Next, all edges forming this route
are eliminated from the graph and a new route search is performed. This
route finding process is repeated until the new found route takes more than
20% more time than the first route found. At this point, it is assumed that
no passengers will still opt for such a slower route. Passengers for a specific
OD-pair are then distributed over the different OD-routes found, where more
are assigned to the shorter routes than to the longer routes. Note that in
our method, routing passengers comes before timetabling. This means that
arrival and departure times are still unknown and so is their spreading out
across one timetable hour. We simplify by assuming that these factors play
no role in the passenger distribution over different routes for a given OD-pair
(Jolliffe and Hutchingson, 1975). This assumption will be more realistic with
good termporal spreading than with bad temporal spreading of alternative
trains (Sels et al, 2015a). After the routing phase, which is parallellised for
all OD-pairs, a non-parallellised merging phase, for each action (ride, dwell,
transfer) on each link of the network is performed. Passenger numbers from
the different OD-streams passing along an action are accumulated. We obtain
the passenger number for every action (edge) in the event activity graph. Note
that the freight trains in our system start in a technical station that passengers
do not have access to. The freight trains also do not halt nor stop in passenger
stations and so, in our routing algorithm, no passengers can get on or off these
trains, as is the case in practice. This means that in our timetabling model, a
freight train is treated like a passenger train with no passengers on, so it will
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be of lower priority during scheduling. If one wants a higher importance, one
could assign a virtual number of passengers to each freight train.

The results from the full passenger routing phase, accumulated per track
section, are given graphically in figure 6. In this figure, the area of each circle
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Fig. 6 Passenger flows in Denmark for a typical Wednesday morning peak

incident to a track section is proportional to the number of people traveling on
trains that travel along that track section. It is clear that the set of trains in
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the area around København transport the most passengers. All trains together
going from Høje-Taastrup to Hedehusene, carry 29215 passengers in the morn-
ing peak. This is the maximum flow present in the graph. The second highest
passenger flows occur on the tracks from København westwards to Odense
and back and also from Fredericia North to Århus and back. It can be seen
that the collected trains for other track sections in the rest of Denmark each
transport a lot less passengers.

3.3 Scheduling: Retiming

Now that we know the number of passengers for each ride, dwell, transfer
and knock-on action, we perform timetabling, according to the methodology
described in section 2. We use the obtained local passenger numbers as fixed
weights in the objective function.

4 Results

With different parameter settings, different MILP timetabling models were
constructed. With each model, we construct a different timetable. Our soft-
ware has a solver independent architecture, using the open source library milp-
logic (Sels, 2012). This way, a simple solver setting and recompilation allows
the software to call any solver supported by milp-logic. Currently, these are
CPLEX, Gurobi, XPRESS. In this paper, we restrict ourselves to reporting of
results with Gurobi. Each of our timetabling models was tackled by the MILP
solver Gurobi version 6.0.0 on an Intel Xeon E31240 3.3GHz processor with
16GB of RAM. When constructing and optimising a MIP model, we noticed
that computation times were sensitive to the amount of passenger flows we
consider in the objective function. When all streams are considered, computa-
tion time becomes excessive so we defined a threshold of number of passengers.
Streams with fewer passengers than this threshold are not considered in the
objective function. The threshold of 210 passengers per morning peak gave
manageable computation times. A further parameter is the required MIP gap.
Setting this to 74% resulted in schedules with a lower total expected passenger
time than the original schedule. Gap values lower than 74% result in better
schedules but computation time also rises. For these parameter values 210 and
74% we get an optimised timetable. This is the timetable we report results for
in sections 4.1 and 4.2. Section 4.1 describes that for this optimised timetable,
there are no minimum headway time violations. Section 4.2 shows that large
time supplements can be and are here assigned to train actions where no pas-
sengers are expected. Section 4.3 shows that for various parameter settings,
the total passenger time in practice that is expected for the resulting optimised
timetables, is always reduced compared to the current timetable.
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4.1 No Collisions nor Headway Violations

The current and optimised timetables were verified by Banedanmark by visual
inspection of space-time graphs per infrastructure line. Some examples of these
graphs are given as figures 7, 8, 9 and 10.
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Fig. 7 Space time graph for the original timetable for line 10
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Fig. 8 Space time graph for the optimised timetable for line 10

Figure 7 shows the space-time diagram of trains running on the train in-
frastructure line 10 between København (KH) and Helsingør (HG) and back
for the original timetable. Figure 8 shows the same trains but now for the
optimised timetable. In figure 7 it can be seen that the original table gener-
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ally leaves the required 3 or more minutes between each couple of subsequent
trains except for 4 cases between København (KH) and Østerport (KK) and
back as indicated by the red dashed circles C1 to C4. Indeed, in circles C1
and C4, train 828 (brown) and train 94423 (dark blue) only have a headway
time of 2 instead of 3 minutes between them. The same happens between train
2514 (dark red) and train 74423 (semi-light blue) in circles C2 and C3. In the
optimised timetable in figure 8, it can be seen that no such violations of the
minimal headway time constraints of 3 minutes occur.

122

125

126

127

918

920

929

931

3324

3328

3333

33353624

3626

3631

3633

3729

3730

3730

3731

65330

65330

65331

65333

95335

95335

95336

95336

FA BK BET VJ HED HS HÅ SD HX HC VI KGV AR

10:00

11:00

Fig. 9 Space time graph for original timetable for line 23
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Fig. 10 Space time graph for the optimised timetable for line 23

Figures 9 and 10 show the space-time diagram of trains running on the
train infrastructure line 23 between Fredericia (FA) and a Århus (AR) and
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back, respectively for the original and the optimised timetable. One can verify
that on this line, for both timetables, no single train collision nor violation of
minimal headway time constraints occurs. For all other infrastructure lines,
similar graphs were generated and verified as well and as such Banedanmark
declared the optimised timetable as free of headway conflicts.

4.2 Large Dwell Times on Line 10 Explained

Figure 8 shows that, at the station Snekkersten (SQ), 4 trains heading for Hels-
ingør (HG) are assigned large dwell times. These trains are (64421 (medium
green), 72025 (light blue), 62029 (yellow-green) and 74423 (semi-light blue))
This is caused by the fact that our routing phase resulted in no passengers
between Snekkersten (SQ) and Helsingør (HS). This can be seen in figure 6,
where no white circle occurs between Snekkersten and Helsingør. This also
means that these dwell times are not penalised in our objective function of
our timetabling model. They can become arbitrarily large without having an
effect on any passengers indeed.

Furthermore, it should be noted that our current timetable is only ideal for
passengers traveling in the morning. Since one usually wants a timetable that
is the same for morning and evening, one can express that by supplying an OD
matrix that contains both morning and evening OD-pairs together. If then, all
ride and dwell actions of all trains will have at least some passengers on them,
in both directions, none of these dwell or ride times will stay unaccounted for
in the objective function of our timetabling model. As such, all these actions
will also have sensible supplements assigned to them.

Also note that in Snekkersten (SQ), in practice, there are not enough plat-
form tracks in the station to allow simultaneous dwelling of 4 trains. Our
timetabling model does indeed not take microscopic issues like this into ac-
count. Again, when some passengers would be assigned to these dwell actions,
shorter dwell times will result and with that the number of simultaneously
dwelling trains will most likely be significantly reduced.

4.3 Reduced Expected Passenger Time

By construction, our optimised timetables contain no single violation of hard
(minimum run time, minimum dwell time, minimum headway time) con-
straints. For headway times this was illustrated in the previous sections graphi-
cally. In this section, we show that the optimised timetable also results in lower
expected passenger time in practice than the original timetable. The relevant
results are shown in table 2. Each of our timetabling models was tackled by
the MILP solver Gurobi version 6.0.0 on an Intel Xeon E31240 3.3GHz pro-
cessor with 16GB of RAM. Results for the different optimisations and their
respective input parameter values are ordered from less to more demanding
from top to bottom. By more demanding, we mean that either the required
MILP gap (column 3) is lower or the number of transfers considered in the
optimisation is higher or a combination of both. The transfer threshold (col-
umn 2) is the number of people that are required as minimum for a transfer
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Table 2 Results for different timetable optimisations of all 88 hourly Danish trains. req.
= required, obt.=obtained, exp. time = expected passenger time, red. = reduction, eval. =
evaluation, orig.tt = original timetable, opt.tt = optimised timetable, rd. + dw. t = ride +
dwell train time.

1 2 3 4 5 6 7 8 9

a
transfer gap gap solver exp. time missed transfers: planned

threshold req. obt. time red.eval. orig.tt opt.tt rd.+dw. t
(%) (%) (%) (s) (%) (%) (%) red.(%)

2 420 75 74.92 19421 1.67 11.34 2.07 -4.88
2 420 74 73.63 62417 1.96 11.34 5.21 -3.95

2 210 79 78.07 1534 0.82 11.34 2.83 -7.77
2 210 77 76.62 2436 1.59 11.34 3.20 -4.89
2 210 75 74.96 2924 2.45 11.34 1.12 -3.08
2 210 74 73.83 3922 2.90 11.34 2.45 -2.53
2 210 73 72.96 20726 3.16 11.34 2.07 -2.05

2 195 76 ≥76.8 ≥101000

to be considered in the optimisation. Column 6 shows the reduction in per-
cent from original to optimised timetable of the expected time as evaluated
over all streams, also the ones with fewer people than the threshold value.
Column 7 shows the missed transfer probability in the original timetable as
simulated over all streams and column 8 shows the same for the optimised
timetable. Column 9 shows the reduction in percent of the planned ride and
dwell supplements from the current to the optimised timetable.

We see that setting the transfer threshold to 420 makes that the solver
spends a lot of time (19421 and 62417 seconds) before it finds a solution with
an optimality gap below the required one. When the transfer threshold is
lowered to 210 transfer passengers, resulting in more transfers considered in
the optimisation, the model seems to become easier for Gurobi. When subse-
quently also lowering the required gap from 79% to 74% (column 3), timetable
solutions are found within 1534 to 3922 seconds (column 5) and corresponding
savings of total expected passenger time increase from 0.82% to 2.90% (column
6). Lowering the required gap further to 73% still improves the solution with
a total reduction of expected passenger time of 3.16%, however, the computa-
tion time then increases significantly to 20726 seconds, being 5.76 hours. To
test if lowering the transfer threshold further below 210 reduces computation
time, we investigate whether a threshold of 195 combined with a not so de-
manding required gap of 76% gives us a good timetable quickly. The last line
of table 2 shows that after 101000 seconds, no acceptable timetable solution
was found yet, since the solver is still at a gap of 76.8%. So the value 210 as
a transfer threshold somehow seems a good trade-off between giving Gurobi
enough information about a good timetable and not too many terms in the
objective function.

For the timetable that reduces the passenger time by 2.90% compared to
the original one, we show the expected passenger time and its components
graphically in figure 11. This figure stacks expected time components on top
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Fig. 11 Reduction of expected passenger time of 2.90% compared to the original timetable.

of each other to reveal the total expected time for all passenger streams, large
and small, for this optimised timetable. Expected time components can in-
deed be added together since all of them are expressed in the same units:
(tenths of) passenger minutes. In figure 11, the left bar indicates the original
timetable (orig) and the right bar indicates the optimised timetable (opt). The
vertical dimension represents expected passenger time, also for its constituent
components: ride (blue), dwell (yellow), transfer (orange), knock-on (purple).
For dwell and transfer time, all ride time of the ride action preceding it, is
convoluted with it, which is what the blue shading refers to. On the left of
each bar, the percentages (orig.m and opt.m) indicate the ratio of the total ex-
pected passenger time part, that can be seen as the consequence of the planned
minima (m), to its total bar height. Note that this part is equivalent to the
planned passenger minimum time. On the right, the percentages (orig.s and
opt.s) indicate the ratio of the total expected passenger time part, that can be
seen as the consequence of the planned supplements (s), to its total bar height.
This part is equivalent to the difference of the total expected time minus the
total planned passenger minimum time. For each color, the minima are shown
in a darker tone of the color and the supplements in a lighter tone of the same
color. Figure 11 shows clearly that the obtained reduction of total expected
time of 2.9% is caused by the net effect of three main changes. First, the
amount of time spent in supplements on ride and dwell actions is significantly
lowered from 7.51% to 4.57%. Second, the expected knock-on delay time is
reduced from 3.14% to 2.59% of the total expected time. Third, the expected
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transfer time is increased from 5.75% to 7.26% of the total expected time. In
absolute terms, the transfer time increase is smaller than the sum of decreases
in expected time spent in ride and dwell supplements and in knock-on events.
This means the net result is a reduction in total expected passenger time.

We go back to table 2. For the best timetables found, its last column men-
tions that these possess between 3.08% and 2.05% more train weighted planned
ride and dwell time than the original timetable. Even then, the total passen-
ger time is reduced. This is possible due to a number of factors. Firstly, our
method adds supplements to trains but weighs them by passengers. Secondly,
supplements can cause extra robustness, so adding planned time can reduce
experienced time in practice. Thirdly, classical manual timetabling uses rules
of thumb like assigning a certain percentage of supplement to each train. To
avoid knock-on delays, we expect these rules to perform worse than our rule of
assigning supplements between each couple of trains sharing an infrastructure
resource, even more so since we do this proportionally with the number of pas-
sengers on the second train and dependent on the expected delay distributions
of both trains.

Table 2 also mentions that the expected missed transfer probability for all
passenger streams together, both large and small, is 11.34% (column 7) for
the original timetable while not more than 2.45% (1.12%, 2.45% and 2.07%,
column 8) for our best three timetables. This is clearly a significant improve-
ment that will be appreciated by the railway passengers. These results were
obtained by a post optimisation calculation on the obtained timetables, for all
passengers streams, small and large, where expected delays are accumulated
and resulting in fractions of missed and non-missed transfers. For the original
timetable the percentage is always the same, 11.34%, since the value of the
transfer threshold plays no role is the missed transfer calculations. Indeed all
passenger streams are considered here and not only streams with more than
the number of passengers indicated by the transfer threshold.

4.4 Further Verification

Further verification of realistic parameter settings like the value of ‘a’ and the
value of transfer minima is warranted for fair comparison with the current
timetable. Also verification of other timetable quality criteria like the possible
preference of some operators to avoid large inserted supplements, even for
actions with very few passengers, is required and ongoing.

5 Conclusion

This paper demonstrates that our PESP based method with an objective
function representing total expected passenger time in practice, improves the
timetable for the whole train network of Banedanmark. Total passenger time
in practice can be reduced by 2.9% and the average probability of missing a
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transfer is reduced from 11.34% to 2.45%. The fact that, after our successful
application to the Belgian train network, the application to a second country
now delivers satisfying results as well, indicates that our approach is quite
generally useful.

Thanks to the addition of a particular set of cycle constraints to the PESP
model (Sels et al, 2015b), computation time stays limited to 65 minutes. This
could lead to huge time savings in the current timetabling practice which, for
the biggest part, is still carried out manually. Alternatively, the time spent on
manual timetabling now, can instead be used to create more alternative line
planning proposals which can be fed to our timetabling system. The line plan
leading to the optimised timetable with the lowest total expected passenger
time can then be selected. This would further improve passenger service.

6 Further Work

Even though the total expected passenger time of our optimised timetable is
lower than the one for the original timetable, the total expected transfer time
component of our optimised timetable increased. It would be interesting to
see if our model could be adapted so that this expected transfer component is
reduced while still also reducing the total expected passenger time.

Some degree of temporal spreading of alternative trains between origin
and destination is beneficial to reduce the inter-departure waiting time for
passenger travelling between these points. Also considering this inter-departure
waiting time at the origin and inter-arrival-time at the destination would avoid
potential bunching of trains and further generalise our method.

We now produce a timetable that respects headway time minima of 3 min-
utes everywhere in the network, which is the most common headway minimum
value for macroscopic railway models. On a microscopic level, the actually
needed headways can be derived from the blocking model (Hansen and Pachl,
2014) and depend on parameters like station infrastructure, train speed and
train length. Per train pair, per station, the required minimum headway be-
tween these train pairs for that station can be calculated and these values
can be substituted for the 3 minute macroscopic headway minima. When our
method is used with these more accurate headway minimum values as input,
a microscopically feasible timetable will result.
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2.6 Optimal Temporal Spreading of Alternative
Trains in order to Minimise Passenger Travel
Time in Practice

Full paper presented at International Association of Railway Operations Research
(IAROR), Tokyo, Japan 23-26 March 2015

Our objective function of total expected passenger time, as developped in
sections 2.2 and 2.3. and as used in the optimisations for Belgium and Denmark
in sections 2.4 and 2.5, contained all passenger travel time from departure to
arrival. However, it did not contain the time that passengers spend before
departure, waiting for their train and after arrival, waiting for their next mode
of transport or before a visit or meeting actually starts. This time, together, is
called excess journey time. We now model this time and add it to our objective
function, which already contained journey time. As such, our model will now
minimise the total travel time, being the sum of journey time and this new
excess journey time. This has the beneficial effect of spreading in time of the
different trains between an origin and destination. Indeed, this is the case,
because this lowers the expected inter-departure time as well as the inter-arrival
time. We investigate this way of spreading in time of these alternative trains
via the objective function. The function of excess journey time is well published
in previous literature. However, we believe it is the first time it has been used
in a timetable optimisation context. The challenge in the optimisation context
was to model this function of times between train departure or arrival times
when the order of the trains is still unknown. We managed to do this.

We also consider alternative ways of spreading via hard constraints on the origin
as well as destination sides of OD-pairs, but this leads to ’over-stretching’ of
these planned journeys containing too many time supplements. We then tried
hard spreading on the origin and soft spreading, via the objective function,
on the destination side. This method had the strongest total expected time
reduction of all three methods. An additional noted and peculiar benefit was
that the total expected transfer times component was almost not growing
anymore compared to the original timetable. Remember that our optimisations
for Belgium and Denmark in sections 2.4 and 2.5 showed that this transfer
component grew from original to optimised timetable, even though the total
expected time was already shrinking by several percentages. So we conclude
that the hard-soft technique for spreading is the preferable technique.

Our experiments work well in terms of computation times up to a set of 26 trains.
However, beyond that, model resolution times still become impractically high.
So this aspect requires further study. Possibly fixing some orders of alternative
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trains can reduce this tractability problem without affecting optimality too
much since the trains are considered alternatives and so alike in timing and
halting pattern. Another possible remedy could be to construct cycle constraints
along ride and dwell edges of these alternative trains.
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Abstract
In an earlier paper on timetabling, we derived a stochastic objective function for what we
consider an ideal timetable: minimal expected passenger travel time in practice. This in-
cludes primary delay distributions and a degree of robustness against these via a knock-on
delay model. This timetable is ideal for passengers who know the timetable in advance and
plan their departure and/or arrival times accordingly. In general, it is considered as a good
service to passengers that the different alternatives to get from an origin to a destination are
equally spread in time. This is even more important for passengers who are not informed
about the timetable or who cannot adapt their time of arrival in the station, for instance
because they want to go home as soon as possible after a meeting. Spreading the trains
decreases the average waiting time at departure and/or waiting time at arrival. In this paper,
we add these terms to the objective function to also provide the advantage of low waiting
times before and after the routes in the resulting timetable. We properly balance benefits of
spreading the trains with the other objectives included in the objective function. The model
solves quickly for a set of 26 trains and 12 sets of alternative routes but still proves to be
difficult to solve for bigger instances.

Keywords
Optimal Cyclic Timetabling, Minimal Expected Passenger Time, Mixed Integer Linear Pro-
gramming,

1 Introduction

It is generally understood, also by train passengers, that in a train service network with
several alternative trains connecting an origin station with a destination station, spreading
of these alternative trains in time is beneficial for train passengers travelling between these
stations. Assuming, for a certain portion of all passengers, a random arrival pattern, it
decreases the total waiting time at departure and symmetrically, also at arrival. The math-
ematical expression for these expected waiting times as a function of the planned heading
times at departure (or arrival) between these alternative trains is well known and widely
published and used in transport practice. In this paper, this expression is added to the objec-
tive function of our Periodic Event Scheduling Problem (PESP) based Mixed Integer Linear
Programming (MILP) model (Sels et al., 2013b, 2014). When solving this model, the ob-
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jective function will be minimised. When doing so, the expected waiting time at departure
and arrival are minimised together with the other components that were already present in
the objective function: expected ride time, dwell time, transfer time and knock-on time. The
result is that we now minimise not only the total journey time, being in vehicle plus transfer
time, but additionally also the excess journey time, being inter-departure plus inter-arrival
waiting time (Zhao et al., 2013). Their sum, actual or observed journey time (Zhao et al.,
2013), is now the new total objective function. This results in improved timetables, as the
objective function approximates better the real expected time that passengers experience in
practice. Indeed, excess journey time is a real expected time component for passengers and
should not be forgotten.

Section 2 gives an overview of research into waiting time and alternative approaches
to realising temporal spreading during timetable construction. We will conclude that our
approach is a novel one. Section 3 formally derives the linear constraints and objective
function terms that will be added to our MILP model later. In the process, some statistics
on the typical number of alternative trains is given for the network of all Belgian passen-
ger trains. Section 3.4 then replaces the constant departure (or arrival) times to variable
ones. Indeed, in the PESP model begin (or end) times of activities are unknown still. As
a consequence, some terms become quadratic and must be linearised. Section 4 discusses
the successful application on a network consisting of 26 Belgian IC trains. We first limit
the objective function to excess journey time without transfer time, then add transfers to the
model, then add more OD-pairs for temporal spreading to the model and then attempt to
tackle train service networks with more trains. The section shows, as is expected, that there
is a noticeable competition between the minimisation of the different time components, es-
pecially between excess journey time and transfer time. Section 5 concludes and hints at
further work that could potentially improve computation times.

2 Related Research Overview and Comparison

Research concerning the advantages of temporal spreading of alternative trains has been
dominated by the analysis of how passengers choose their trains, when they choose to ar-
rive at their station of departure and how this affects their expected inter-departure waiting
time. The published results are described in section 2.1. Section 2.2 discusses which sub-
categories of passengers display random arrival behaviour. While the mentioned research
is very interesting, it is very noticeable how inter-arrival waiting time has been left mostly
unmentioned. We discuss this in section 2.3. Also, less attention has been paid to how
this waiting time should be incorporated in models to construct timetables with the desir-
able property of temporal spreading. The traditional method of timetabling that intends to
realise temporal spreading and a newer method are mentioned in section 2.4. Section 2.5
gives a quick overview of the rationale of our novel method.

2.1 Models of Expected Inter-Departure Waiting Time

The most simplistic model of passengers arriving in their station of departure is one where
it is assumed that a constant number of passengers f arrives during every unit of time. This
implicitly assumes that passengers are not adapting their arrival time to the knowledge of the
train departure times as planned in the timetable. This model is called the random arrival
model. This model has been assumed for studying transit reliability by de Pirey (1971),
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Barnett (1974), Bly and Jackson (1974) and Friedman (1976).
Welding (1957), Holroyd and Scraggs (1966) and Osuna and Newell (1972) derived

that, for passengers who are arriving randomly at their station of departure, the expected
waiting time until departure E(w) can be expressed as a function of the average vehicle
planned heading time E(h) (over all heading timesHi in the cyclic timetable period T ) and
the variation coefficient Cv(h) of the real time heading times:

E(w) = E(h)/2 ·
(
1 + Cv(h)

2
)
. (1)

Here, h is the heading time distribution and E(h) is the expected heading time as it can
be calculated from the planned timetable as

E(h) =

N−1∑

i=0

pi ·Hi =

N−1∑

i=0

(Hi/T ) ·Hi =

N−1∑

i=0

H2
i /T, (2)

where pi is the probability of a passenger experiencing heading time Hi in period T .
Cv(h) = σ(h)/µ(h) is the ratio of the standard deviation over the mean, both of the heading
time distribution in real time. Substitution of the right hand side of equation (2) for E(h) in
equation (1) and multiplication by the number of considered randomly arriving passengers
f delivers

E(f · w) = f

2T

N−1∑

i=0

H2
i ·
(
1 + Cv(h)

2
)
. (3)

The general objective is to minimise the expected waiting time at arrival, E(w), in
equation (1). This can be done by either minimising E(h) or Cv(h)

2 or a combination of
both. Note that, for equal temporal spreading between N vehicles in time T , it holds that
E(h) = H = T/N and that otherwise E(h) > H = T/N . The second can be understood,
from equation (2) and realising that the probability pi equals Hi/T , so the probability to
experience a higher heading time during time T is higher than the probability to experience
a lower one. So, when supposing there are no real time delays, E(h) is minimised by equal
spreading of headways in the timetable if the amount of vehicles N per period T is fixed
or otherwise by increasing the number of vehicles N . The value of Cv(h) is decreased by
lowering σ(h)/µ(h), representing the reduction of relative deviations from the timetable
headways. This is done by better control of the timing of vehicles. Islam and Vandebona
(2010) mention thatCv(h) is often used as a measure for reliability. They study bus systems
where planned heading times are all equal. In that case E(h) = H and, assuming a fixed
amount of vehicles, decreasing E(w) can then only be obtained by reducing Cv(h) by
making the timing of the system more reliable. For a train system, often one must, like
when having to insert a freight train between a set of N passenger trains, plan unequal
heading times Hi. In that case, even in the planning E(h) > H occurs. This summarises
the effect of the number of alternative vehicles N , planned vehicle spreading in time E(w)
and reliability Cv(h) on passenger waiting time for randomly arriving passengers. In this
paper we will try to reduce E(w) by reduction of E(h), with fixed number of trains N , so
by the use of optimal spreading only. Reducing Cv(h) is useful but cannot be done via the
timetable.

Later, studies appeared where the more complex behaviour of passengers, adapting their
arrival time at their station of departure to their chosen vehicle planned departure time is
studied (Okrent, 1971; Jolliffe and Hutchingson, 1975; Jackson, 1977; Turnquist, 1978).
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Jolliffe and Hutchingson (1975) subdivide passengers in 3 categories. Some fraction q is
supposed to manage to arrive coincidental with the vehicle arrival time and are assumed to
have no waiting time. The remaining fraction (1− q) of passengers is split into a proportion
(1−q)p, who arrive so as to minimise expected waiting time and a proportion (1−q)(1−p)
arrive randomly.

In this paper, we want to optimise the heading times of all trains a passenger going from
a station O to station D can choose, so that the corresponding waiting time stays low. This
will be achieved by minimisation of the total journey time of which this waiting time is a
component. The effect on passengers arriving randomly is described by equation (1). We
suppose they come in a portion r. So their total waiting time is r ·E(w). The primary effect
on passengers waiting time of passengers that shift their arrival times with time δtwhen their
planned vehicle departure time is shifted in a new timetable with δt is zero. This means that
the fixed waiting time of the portion (1− r) of passengers needs not and so will not occur in
the objective function waiting time at departure terms of our timetable optimisation model.
When evaluating the total waiting time, their fixed waiting time x can possibly be added as
fixed amounts, (1− r) ∗ x, which is indeed independent of the timetable.

Bowman and Turnquist (1981) studied passenger arrival patterns at bus stops at seven
locations around Chicago. They write that expected passenger waiting time at a transit stop
is dependent on three things: the distribution of passenger arrival times at that stop, the
planned arrival times of the vehicles at that stop and the deviations in practice from the
arrival times of these vehicles. They use a passenger choice model that is fitted to mea-
surements of passenger arrival times at bus stops. They study the effect of both decreasing
headway times (by adding more vehicles) and decreasing the standard deviation on vehicle
arrival times (by increasing reliability in operations) on expected waiting times. They con-
clude that both can decrease expected waiting time both for the random arrival model and
for the passenger choice model. Bowman and Turnquist (1981) suggest that higher heading
times will lead to fewer random arrival passengers, since they will want to avoid the higher
waiting penalty time. This indicates that our r should in fact be dependent on the number
of vehicles N from O to D per timetable period. This is indeed what Fan and Mechemehl
(2002) also report from their data analysis. They identified a 10 minute vehicle headway as
the transition from random to non-random passenger arrivals.

More recently, the terms excess journey time (EJT) and passenger incidence behaviour
have been added to the transport research vocabulary (Furth and Muller, 2006; Frumin and
Zhao, 2012; Zhao et al., 2013). EJT is the difference between the journey time as implied
by the published timetable and the actual journey time (Zhao et al., 2013). The waiting
time before the first vehicle departs from the moment the passenger arrives at station O and
the waiting time after the last vehicle arrives before the passenger leaves station D are the
two components making up this excess journey time. The second component can also be
seen as inter-departure time of the next transportation system the passenger moves to after
the one considered. Passenger incidence behaviour is the generic name for how passen-
gers interact with the transportation system (Furth and Muller, 2006). Information about
the transportation system can influence how they make choices and use the transportation
system. The above mentioned random arrival model and passenger choice model are two
different passenger incidence behaviours.

The research mentioned above is mainly focussed on accurately measuring in reality
and then fitting and modelling passenger and vehicle arrival distributions and the resulting
expected passenger waiting time. However, we are not aware of any research also incorpo-
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rating any of these models in a timetabling method that automatically minimises passenger
waiting time at departure or arrival. This is our focus in this paper.

2.2 Random Arrival Passenger Subcategories

Jolliffe and Hutchingson (1975) mention that the fraction of passengers who are uninformed
or unaware about timetable departure times of their alternative trains, especially during peak
hours, is low. That may be true for some networks, but they are not the only passengers that
show random arrival behaviour. Consider table 1. We will traverse it from left to right.

informed caring adaptable adapting

in time for departure
(1− r)

passenger choice
for transfer model

over time for departure

r
random arrivalfor transfer

unadaptable
not adapting modelnot-caring

uninformed

Table 1: Sub-categories of passengers: fraction (1-r) showing passenger choice model be-
haviour and fraction r showing random arrival behaviour.

Amongst the informed passengers , there are some that do not care or don’t want to be
too stressed out about getting the first possible train departure. They are informed but are not
adapting their arrival time to the train departure times available in the timetable. Amongst
the passengers who do care, some cannot adapt, because they have time constrained obli-
gations before arriving at the train platform. For example they have to bring their kids to
the creche at a certain fixed time. We categorise them as unadaptable. Amongst the caring,
adaptable passengers, all will be adapting but only some will be successful and in time for
the aimed train departure (at origin or transfer station) and some will be unsuccessful and
over time for the train departure (again at origin or transfer station). Only the in time pas-
sengers, with fraction (1 − r) should be considered to behave according to the passenger
choice model. For this fraction, temporal spreading of alternative trains will not decrease
their expected waiting time at departure. The rest, fraction r, behave according to the ran-
dom arrival model. For them, spreading of alternative trains will decrease their expected
waiting time at departure and so is useful. We do not claim that the vertical dimensions of
the rows in table 1 are scaled proportionally to the ratios in reality. However, consider that
there are quite some types of passengers making up the ratio r. The table can be used to
derive the value of r if one can estimate the splitting fractions, at each step, going from left
to right through the table.

2.3 Expected Inter-Arrival Waiting Time

Most research focussing on excess journey time mentions inter-departure waiting time but
does not mention inter-arrival waiting time. Temporal spreading at train departure is inspired
by the idea of randomly arriving passengers, which is the best assumption one can make if
no more detailed information is known about passenger incidence behaviour. Similarly,
spreading at the arrival side of the transportation system considered is desirable because
one wants to minimise waiting time for the transportation system coming after the system a
timetable is being constructed for. So at the arrival side, we suppose a waiting time occurs,
according to the same model as for the waiting time occurring at the departure side.
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2.4 Approaches to Realise Temporal Spreading of Trains

Within the PESP approach to timetabling (Serafini and Ukovich, 1989; Schrijver, 1993;
Nachtigall, 1996; Goverde, 1998a,b), the usual approach to enforce constant heading times
between trains along the same path is the use of regularity constraints (Peeters, 2003; Kroon
et al., 2007; Liebchen, 2006, 2007; Caprara et al., 2007; Kroon et al., 2009; Caprara et al.,
2011; Sparing et al., 2013). A regularity arc in the PESP model connects two departure
times of alternative trains and imposes a fixed heading difference (modulo the timetable pe-
riod T). We think that sometimes deviation from this optimal spreading should be allowed
since minimisation of other expected time components is also important. Secondly, the en-
forcement of spreading is intended for the portion r of passengers that arrive randomly at
their departure station. The portion (1 − r) of people that adapt their arrival time to a par-
ticular train departure time have no primary beneficial effect. Hard (regularity) constraints
cannot differentiate between two passenger categories while soft spreading can do this via
the objective function. Thirdly, in this approach, these regularity constraints are usually
only applied to trains which have exactly the same path. So routes which contain transfers
do not occur. However this is not a restriction imposed by PESP. We think what matters is
that all alternative train services leading from O to D should, together, be imposed upon
some degree of temporal spreading.

When many groups of alternative trains exist, all trains within a group are repetitions
of each other and one ends up with a problem called multi-module PESP (Galli and Stiller,
2010). For these systems they developed a specific formulation. They claim that the power-
ful PESP based methods developed for uniform modules generally fail for the multi-module
case and demonstrate that their approach helps reduce computation time.

2.5 Minimising Excess Journey Time to Realise Optimal Temporal Spreading of Trains

We think we can formulate the benefit of temporal spreading of alternative trains in terms
of the waiting time it saves for passengers. If we minimise the expected waiting time at
departure and arrival, together with journey time, the resulting timetable will possess the
spreading that is optimal to passengers, not more, not less.

Setting up an integer linear model that achieves minimisation of waiting time, both at
departure and at arrival, in the expected passenger domain and applying it on as many trains
as possible are the topics of this paper. To the best of our knowledge, no research has been
carried out in this direction before.

3 Cost of Waiting for the Next Alternative Train

In section 3.1 the constraints for imposing optimal spreading are derived. Section 3.2 derives
the corresponding objective function terms and proves that these will be minimal at equal
spreading. Section 3.3 shows that the number of alternative trains stays low in practice.

3.1 Derivation of Basic Constraints, Solving the Unknown Order Problem

Sometimes, a train passenger can choose between multiple train routes that lead him from
his origin stationO to his destination stationD. Some of the alternative routes will consist of
a different train or trains visiting the same intermediate stations and some may be composed
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of different trains that also visit different intermediate stations. Some connections between
O and D may require a transfer and some may not. In the sequel, we will simply talk about
alternative trains or alternative routes when we mean the collection of all possibilities to
go from O to D using any combination of trains possible. To be able to optimise and also
evaluate any train schedule concerning the cost of waiting for alternative routes, we derive
this cost analytically here. This cost can then be added to the objective function described
by Sels et al. (2013b).

Let RO,D be the set of all route alternatives from station O to D. Say that from O to D,
we have a total of #RO,D = N routes. We define their index set as IN = {0, 1, ..., N −1}.
We choose the couple of different routes ri and rj , where i ∈ IN and j ∈ IN and i 6= j. Let
the variables bi and bj be these routes’ respective planned begin times modulo T in station
O. We now choose to develop our derivation for the begin sides of routes, but the derivation
for the end sides is entirely similar. To be able to define the times in between two subsequent
begin times, we need to know the cyclic order of these begin times. Since, during timetable
optimisation, this is still to be determined in the model, we define a vector b, with the same
N values as vector b, but then sorted in non-decreasing order. Formally, the non-decreasing
order is enforced by

∀(O,D) :

{
∀i ∈ IN \ {N − 1} : bi ≤ bi+1

bN−1 ≥ b0.
(4)

Since we need the same scalar values in the vectors b and b, we declare that b is a
permutation, defined by the permutation matrix pi,j ,of b by imposing

∀(O,D) : ∀i ∈ IN :





bi =
∑

j∈IN pi,j · bj
∀j ∈ IN : pi,j ∈ {0, 1}∑

j∈IN pi,j = 1 =
∑

j∈IN pj,i.
(5)

The expected time of waiting for the next departure from O to D will be a function
of the time differences in between subsequent bi, bi+1 values. We call these delta times
supplements si and define them by

∀(O,D) :




∀i ∈ IN \ {N − 1} : si = bi+1 − bi

sN−1 = (b0 + T )− bN−1
∀i ∈ IN : 0 ≤ si ≤ T − δ.

(6)

δ is the smallest time difference in our model, so our time resolution. We used 6 seconds
for δ and 1 hour for T , so T = 600δ. The range of si from 0 up to, but not including T , is
sufficient to allow equation (6) to always have feasible solutions. Indeed, ∀(i, j) ∈ In : 0 ≤
bi ≤ T − δ and so for the non-decreasingly ordered bi it holds that ∀i ∈ IN \ {N − 1} :
0 ≤ bi+1 − bi ≤ T − δ. This also allows the case si = 0. Note that from equation (6), it
follows that

∀(O,D) :
∑

i∈IN
si = T. (7)

Even though the equations (7) are linearly dependent of the equations (6), for computa-
tional reasons, we also impose them in our model.

We now defined all necessary variables to be able to derive the expected waiting time
until first departure in O for D. Note that, in the equations (4), (5) and (6), for notation
simplicity we left out the indices O,D for N, bi, pi,j , bi and si and we will also do so in the
sequel.
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3.2 Derivation of Objective Function Terms representing the Expected Excess Jour-
ney Time

The accumulative function of the number of randomly arriving passengers, with assumed
rate f per hour, wanting to go from O to D and randomly arriving in O is a sawtooth function.
From the time bi up to the time bi+1 = bi+ si, the number of randomly arriving passengers
at O has accumulated from 0 up to f · si, at which time they all take the train departing
on route rj . The total average time they have to wait altogether for their route departure is
given by the number of additional people arriving during time dt at origin stationO, namely
f ·dt, multiplied by the time they will have to wait (si−t), and this integrated over t ranging
from 0 to si. This gives

ui =
∫ si
0
(si − t) · f dt = sif

∫ si
0
dt− f

∫ si
0
t dt = f

s2i
2 . (8)

This integration results in the surface of a rectangular triangle from the sawtooth func-
tion, with base si and height f · si. The total expected waiting time for a randomly arriving
passenger arriving at O and wanting to go to D before he has taken his first train is

∀(O,D) : U =
∑

i∈IN
ui = f/2 ·

∑

i∈IN
s2i . (9)

Note the equivalence of equation (9) with the equation (3) from earlier literature. Indeed
si = Hi and f = F/T . One can prove that the function U in equation (9) is minimal when
∀i ∈ IN : si = T/N . Indeed, using a Lagrange multiplier for constraint (7) that has to be
satisfied for all solutions, one gets that the following should be minimised

∑

i∈IN
s2i − λ ·

(
T −

∑

i∈IN
si

)
. (10)

So the partial derivatives to all si and to λ should all be zero. This means

∀(O,D) :

{
∀i∈IN : 2si + λ = 0

: T −∑i∈IN si = 0.
(11)

From the top half of equation (11), it follows that all si are equal and from the bottom
part, that they are all equal to T/N . Each second derivative to si equals 2 which is positive,
so si = T/N gives a minimum and not a maximum. �

The bi variables in equations (6) will, when integrated in our complete model, also be
connected (via the pi,j permutation matrix variables) to the bi variables. In our complete
model, the bi variables and also the supplement variables si between them also occur in
other constraints and objective function terms. These hard and soft constraints may influ-
ence the optimal choice of the si here. As a consequence, the optimal solution where all si
are equal, found when nothing apart from equations (4), (5), (6) constrains bi, may not be
the one that is also found when integrating it in our complete model.

Equation (9) is useable for evaluation of a given schedule, but for linear optimisation, a
function that is linear in the model variables si is needed. We will solve this issue here by
linearisation of the ui terms. Every term ui = f · s2i /2, can be approximated by a piecewise
linear function composed of 2 segments, by sampling the curve (si, f · s2i /2) in 3 points.
Since the a priori optimal spreading of begin times for N routes in a time T is at equidistant
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intervals of time T
N , as proven, we take this delta time as one of the three sample values for

si. This will lead to a high accuracy approximation of the real cost function in the part of
the range of si that delivers the most optimal solutions. The other necessary sample points
are its lower bound 0 and upper bound T . So, the resulting 3 points are

∀(O,D) : ∀i ∈ IN :





(si,0, ui,0) = (0, 0)

(si,1, ui,1) =
(

T
N ,

f
2

(
T
N

)2)

(si,2, ui,2) =
(
T, f2T

2
)
.

(12)

Equation (12) describes a piecewise linear convex function which can be implemented
in a linear programming formulation by addition of a linear inequality for each of the two
subsequent segments, forming a convex (si, ui) search space together, as follows

∀(O,D) : ∀i ∈ IN :





ui ≥ ui,0 +
ui,1−ui,0

si,1−si,0 · (si − si,0)

= 0 +
fT2

2N2
T
N

(si − 0) = fT
2N si

ui ≥ ui,1 +
ui,2−ui,1

si,2−si,1 · (si − si,1)

= fT 2

2N2 +
fT2

2 −
fT2

2N2

T− T
N

(si − T
N )

= fT 2

2N2 + N
(N−1)·T

(
fT 2N2−fT 2

2N2

)
(si − T

N )

= fT 2

2N2

[
1 + N(N+1)

T (si − T
N )
]
.

(13)

Since the units of f, T,N and si are respectively 1/time, time, 1 and time, the right
hand sides of (13) are indeed two costs in units of time. The fact that our total objective
function is minimised rather than maximised, guarantees that the (si, ui)-points resulting
from the model solution will lie on, rather than above the two line segment function. It is
important to realise that the values f , T , N are constant (manifest) to the model, so the
piecewise linear functions in si can be calculated as known (linear) functions of only the
model variable si at model setup time.

We have now converted the cost function of second degree in (9) into the necessary linear
inequalities (13). Thanks to minimisation of our objective function which contains the terms
ui for every OD-pair, and the enforcement of equation (5) and (6), a non-decreasing order
for bi will be selected and as a consequence, the≥-signs in (13) will turn into =-signs. This
will deliver us the correct, be it linearly approximated cost, instead of only a - possibly weak
- upper bound of it.

3.3 N is mostly Small in Practice

We have derived a model extension that takes care of spreading concerns. This extension
generates equations and costs when ranging over i ∈ IO,D. For each (O,D)-pair, this range
containsN(N−1) elements. The question then is if thisN does not get impractically large.

In practice, passengers choose between different routes leading them from their origin
station O to their destination station D. Our route choice algorithm, as described in Sels
et al. (2011), tries to mimic this behaviour by considering the fastest route. Suppose that
this route has length l. We also consider all routes up to length l(1 + a), where a = 20%.
A transfer is penalised by attributing a time of p = 15 minutes to it. We estimate that
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these values for a and p are realistic average for passengers. van der Hurk et al. (2014) use
exactly the same graph for route generation, which they call extended network and for one
algorithm, they call STA, also consider trip duration only and also penalise transfers. They
could validate routes with a route set that passengers take in reality and report that STA is
able to generate 95% of the routes correctly. We can expect that our method in Sels et al.
(2011), if validated, would reach similar percentages of realistic routes and so that it uses
enough relevant information as input.

In our algorithm, we do not consider departure times nor their current spreading in time,
since they are still unknown in the timetable to be computed. We believe that taking this
information from the current timetable would lead to too much bias to the current, possibly
suboptimal, departure times or spreading. To avoid any bias for passengers to prefer routes
with particular departure hours, we suppose an a-priori distribution of departure times as
well as passengers that is ideal in that sense. This means we suppose both passengers and
departure hours to be uniformly spread in the hour.

Train filling levels which passengers may also consider in practice, play no role in our
algorithm. Typically, vehicle assignment and decisions on the numbers of cars per train is
indeed done after timetabling.

In practice, when routing all passengers through the graph of all Belgian passenger
trains, we experience that the number N of alternative routes per OD-pair is usually low.
Figures 1 up to 3 represent histograms indicating per number N of found routes for an OD-
pair, the number of times that that N occurs over all 18268 OD-pairs derived from ticket
sales data in Belgium. Figure 1 shows this for a = 10%, figure 2 for a = 20% and figure
3 for a = 30%. Naturally, when a is increased, for a particular OD-pair, the number N of
found routes cannot decrease. So statistically, when considering all routes, we expect that a
higher a leads to a higher average N . The figures 1 to 3 confirm this.
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Figure 1: a = 10%

nRoutes_for_OD

#O
D

0 5 10 15

0
20

00
60

00
10

00
0

14
00

0

tot=28064.00

avg=1.54

Figure 2: a = 20%
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Figure 3: a = 30%

For a = 10%, a = 20% and a = 30% respectively only 4, 4 and 6 OD-pairs occur that
have a number N between 18 and 32.

The cases with around 32 possibilities for the same OD pair occur between stations
around Brussels, where that many trains per hour with equal or similar journey time from O
to D do indeed occur. So the number of supplements N · (N − 1), introduced in equations
(6), will rarely get big, nor will the same number of boolean variables pi,j in the equations
(5) or the number of added inequalities or couples of added inequalities in (13).
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3.4 Linearising pi,j · bj

The modelling method described in sections 3.1 and 3.2, has been tested separately with a
bunch of random but fixed valued bi’s combined with some values for N . The pi,j indeed
give a permutation that makes that bi are sorted in non-decreasing order. With T = 600δ
and N <= 10 the model is typically solved in 40 milliseconds. Since N will typically be
smaller than 6, this will not be a problem. However, solving such a problem corresponds to
determining and calculating the waiting time costs of alternative routes for 1 OD pair only.
When considering all trains in Belgium, about 19000 of OD pairs occur simultaneously.

The model should also work when the vector b contains model variables instead of fixed
constants. Since the bj are variables, (since they are also subject to other PESP constraints),
the terms pi,j · bj in equation (5) are quadratic instead of linear. When a linear model is
required, this issue is easily solved by introduction of the helper variables hi,j ∈ [0, T − δ]
where

∀(O,D) : ∀i, j ∈ IN : hi,j = pi,j · bj . (14)

Equations (14) are then linearised, using the big-M method (Williams, 1994), to the
inequalities

∀(O,D) : ∀i, j ∈ IN :

{
(bl − bu)(1− pi,j) ≤ hi,j − bj ≤ (bu− bl)(1− pi,j)
bl · pi,j ≤ hi,j ≤ bu · pi,j ,

(15)
where bl and bu are the lower respectively upper bounds on all bj . In our case, bl = 0

and bu = T − δ. The top inequality imposes hi,j = bj when pi,j = 1 and imposes nothing
new when pi,j = 0, while the bottom inequality imposes hi,j = 0 when pi,j = 0 and
imposes nothing new when pi,j = 1. This is indeed equivalent to what equations (14)
impose. The top line of equation (5) can now be replaced with its linear equivalent

∀(O,D) : ∀i ∈ IN : bi =
∑

j∈IN
hi,j . (16)

The PESP timetabling model is now extended with linear objective function terms and
linear constraints to include excess journey time. We wil now apply this model to subsets
of the passenger train network in Belgium.

4 Results

This section reports on the results of the application of the model developped in the pre-
vious sections on sets of trains extracted from the Belgian timetable as it is planned for
16/12/2014. All experiments in this paper ran Gurobi v5.6.3 on an Intel Xeon CPU E31240
3.3GHz processor with 16GB RAM.

In section 4.1, in order to study the effect of OD spreading separately, we start with a
proof of concept where no passenger transfers are considered. A network of 26 trains is
used as the test network. Section 4.2 makes a comparison of results obtained with three
approaches: (i) our soft spreading technique via the objective function, (ii) the traditional
hard spreading technique via hard constraints and (iii) a mixed hard-soft method. In section
4.3, we extend the optimisation by including transfers and verify whether total expected
passenger time, and its components (expected ride time, dwell time, transfer time, knock-on
time and excess journey time related to temporal spreading) can all still be reduced and if
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so, to what degree. Section 4.4 does the same but for adding more OD-pairs for spreading
optimisation. In section 4.5 the scalability of our method is tested by increasing the network
size input to our model.

4.1 Proof of Concept

Table 2 shows the results of optimisations run with a computation time limit of 600 sec-
onds. The OD-pairs which are to be optimised for spreading, are selected by requiring at
least 1000 passengers per morning peak for them. This results in 12 OD-pairs. The largest
OD-flow occurs between O=Leuven and D=Brussels-Centraal and has F=1751.6 passen-
gers per morning peak. In the case of r=100%, per time unit of time δ of 6 seconds for
each of all morning peak hours together, f = F/T = F/600 = 2.9193 passengers going
to D are assumed to arrive at the origin station O. The 3 Inter City train alternatives for
(O,D)=(Leuven, Brussels-Centraal) are IC:A:2, IC:E:2 and IC:F:2. All three connect O and
D directly without a transfer. In fact, in these 12 OD-pairs, no single train journey with a
transfer occurs.

In the optimisations, the fraction of assumed randomly arriving (and departing) pas-
sengers is varied over r = 0%, 1%, 5%, 10%, 50%, 100%. For each value of r, a separate
optimisation was carried out and a different optimised timetable was computed. Of course,
the original timetable, used as reference is the same for all values of r. For each of the 12
OD-pairs that was selected, on the rows s0, s1, s2, the inter-departure times (heading times)
at O and inter-arrival times (heading times) at D are given, both for the original timetable
(columns orig O and orig D, italic) and for the optimised one (columns opt O and opt D
* (0,1,5,10,50,100), normal). This gives an idea of the improvement in spreading that was
reached. For example, for the case Oostende-Brugge, in Oostende, the original timetable
has a spreading of (s0, s1) = (310, 290) while the optimised timetables, for many but not
all cases of r, deliver the perfect spreading of (s0, s1) = (300, 300). For three trains per
hour, for example, from Brussel-Zuid to Leuven, we get in the original timetable, at O,
(s0, s1, s2) = (264, 180, 156) and at D, (s0, s1, s2) = (182, 154, 264) while in the op-
timised timetable for r = 100%, we get at O, (s0, s1, s2) = (195, 154, 264) and at D,
(s0, s1, s2) = (200, 200, 200), a perfect spreading.

The corresponding excess journey time at O and at D are also mentioned, again both
for the original timetable (on the rows uorig) and for the optimised timetable (on the rows
uopt). Note that the values on the rows uorig, irrespective of their value for r in their column
heading, always refer to the same original timetable. Contrary to this, the values on the rows
uopt, refer to a timetable specially optimised for the r value in their column heading. These
values indicate how much reduction in excess journey time has been accomplished for a
specific OD-pair, for a specific value of r. On the uopt rows a value that is lower than the
value above it, in row uorig, is underlined, indicating that a reduction in excess journey time
has been achieved. It is marked in bold otherwise. The spreading reached amongst the si
must be seen as the consequence of the minimisation of the corresponding excess journey
time as terms ui in the objective function according to their relation given by equation (9).
We see, as we can expect, that roughly spoken, the higher the value for r and f , the more
close the si values get to each other, and to T/N .

The values in the rows uorig are proportional to their r value. The columns where
r = 0% do in fact result in uorig = 0 = uopt. However, we calculated the incidence wait
costs for the timetable reached for r = 0% as if r = 1% to show what an underestimation
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r (%) orig 0(1) 1 5 10 50 100 orig 0(1) 1 5 10 50 100
O opt. O, Begin Spread D opt D, End Spread

Leuven to Brussel-Centraal, F=1751.6, f=2.9193, [0: IC:A:2:5xx, 1: IC:E:2:15xx, IC:F:2:17xx]
s0 152 63 86 287 287 156 326 271 68 118 119 119 198 104
s1 175 64 111 202 202 200 162 121 473 401 283 283 248 333
s2 273 473 403 111 111 244 112 208 59 81 198 198 154 163

uorig 1872 1872 9361 18721 93607 187215 1917 1917 9586 19172 95861 191722
uopt 3383 2658 9889 19778 90406 211746 3384 2646 9740 19480 90809 216432

Brussel-Centraal to Leuven, F=1751.6, f=2.9193, [0:IC:F:1:17xx, 1:IC:A:1:5xx, 2:IC:E:1:15xx]
s0 154 81 73 151 197 102 196 182 74 200 295 179 200 200
s1 263 73 323 149 181 299 206 154 450 74 151 221 102 200
s2 183 446 204 300 222 199 198 264 76 326 154 200 298 200

uorig 1845 1845 9223 18446 92232 184465 1847 1847 9235 18470 92351 184701
uopt 3077 2208 9853 17641 101744 175243 3120 2215 9746 17645 101599 175161

Gent-Sint-Pieters to Brussel-Centraal, F=1648.58, f=2.7476, [0:IC:E:1:15xx, 1:IC:A:1:5xx]
s0 156 451 205 300 178 300 391 154 154 396 300 181 299 206
s1 444 149 395 300 422 300 209 446 446 204 300 419 301 394

uorig 3043 3043 15213 30426 152131 304262 3059 3059 15293 30586 152928 305856
uopt 3099 2721 12364 28818 123644 270040 3059 2726 12364 28620 123645 271565

Brussel-Centraal to Gent-Sint-Pieters, F=1648.58, f=2.7476, [o:IC:E:2:15xx, 1:IC:A:2:5xx]
s0 121 541 519 198 402 248 333 151 86 101 219 227 372 286
s1 479 59 81 402 198 352 267 449 514 499 381 373 228 324

uorig 3353 3353 16766 33532 167662 335324 3083 3083 15414 30829 154144 308287
uopt 4069 3791 13794 27587 127358 250279 3731 3561 13266 26193 130765 256590

Oostende to Brugge,F=1177.78,f=1.9629, [0:IC:G:1:18xx, 1:IC:A:1:5xx]
s0 310 66 300 360 300 300 300 310 64 300 360 300 300 300
s1 290 534 300 240 300 300 300 290 536 300 240 300 300 300

uorig 1769 1769 8843 17686 88432 176863 1769 1769 8843 17686 88432 176863
uopt 2842 1767 9187 17667 88334 176667 2860 1767 9187 17667 88334 176667

Brugge to Oostende, F=1177.78, f=1.9629, [0:IC:G:2:18xx, 1:IC:A:2:5xx]
s0 324 64 457 313 300 312 300 300 63 143 289 300 291 300
s1 276 536 143 287 300 288 300 300 537 457 311 300 309 300

uorig 1778 1778 8890 17780 88899 177798 1767 1767 8833 17667 88334 176667
uopt 2860 2251 8850 17667 88475 176667 2869 2251 8845 17667 88413 176667

Brugge to Gent-Sint-Pieters, F=1169.78, f=1.9496, [0:IC:A:1:5xx, 1: IC:G:1:18xx]
s0 310 64 300 240 301 395 300 300 68 296 233 300 234 300
s1 290 536 300 360 299 241 300 300 532 304 367 300 366 300

uorig 1757 1757 8783 17566 87831 175662 1755 1755 8773 17547 87734 175467
uopt 2841 1755 9124 17547 104357 175467 2804 1755 9211 17547 91980 175467

Gent-Sint-Pieters to Brugge, F=1169.78, f=1.9496, [0: IC:A:2:5xx, 1:IC:G:2:18xx]
s0 307 51 183 300 313 300 365 304 536 436 313 300 313 253
s1 293 549 417 300 287 300 235 296 64 164 287 300 287 347

uorig 1756 1756 8778 17556 87781 175563 1755 1755 8775 17550 87749 175498
uopt 2963 2022 8773 17580 87734 183704 2841 2115 8790 17547 87898 179774

Leuven to Brussel-Zuid, F=1154.47, f=1.9241, [0: IC:A:2:5xx, 1: IC:E:2:15xx, IC:F:2:17xx]
s0 152 63 86 287 287 156 326 208 116 116 200 117 200 162
s1 175 64 111 202 202 200 162 271 401 401 117 283 246 106
s2 273 473 403 111 111 244 112 121 83 83 283 200 154 332

uorig 1234 1234 6170 12339 61696 123392 1264 1264 6318 12636 63181 126363
uopt 2230 1752 6518 13035 59586 139560 1743 1743 6435 12870 59759 142100

Brussel-Zuid to Leuven, F=1154.47 , f=1.9241, [0:IC:F:1:17xx, 1:IC:A:1:5xx, 2: IC:E:1:15xx]
s0 264 82 75 153 196 300 195 182 74 200 295 179 200 200
s1 180 71 322 148 180 200 205 154 450 74 151 221 102 200
s2 156 447 203 299 224 100 200 264 76 326 154 200 298 200

uorig 1216 1216 6082 12163 60817 121635 1217 1217 6087 12174 60868 121735
uopt 2035 1448 6480 11640 67344 115495 2056 1460 6424 11630 66963 115447

Gent-Sint-Pieters to Brussel-Zuid, F=1086.56, f=1.8109, [0:IC:E:1:15xx, 1:IC:a:1:5xx]
Brussel-Zuid to Gent-Sint-Pieters, F=1086.56, f=1.8109, [0:IC:E:2:15xx, 1:IC:a:2:5xx]

Table 2: Inter-departure and inter-arrival times si and corresponding excess journey times
u per OD-pair, for optimisations over a set of 26 Belgian IC trains over a range of F · r
passengers with assumed random incidence behaviour. OD spreading threshold=1000, no
transfers, computation time = 600s.
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of the value of r by 1% would result in here. One sees that the uopt values in column
r = 0% are much higher than those in column r = 1%. This is of course the case because
at r = 0%, no excess journey time terms are present in the objective function. This indicates
that there are quite severe waiting times expected for randomly arriving passengers if one
does not model the incident waiting time at all. Table 3 shows that, compared to the excess
journey time of the original timetable, an increase of 42% is expected. This indicates that in
the original timetable, already quite some spreading was achieved and that in turn explains
that even if uopt is just a few percentages removed from uorig, the penalties in the objective
function on not spreading must already be delivering their result.

Table 3 shows the column sums over the 12 OD pairs, UO,orig =
∑11

i=0 uOi,orig ,
UO,opt =

∑11
i=0 uOi,opt and similarly for the destinations D, for the different values for r.

The sums for origin and destination are also calculated as UO+D,orig = UO,orig + UD,orig

and similarly for the optimised schedule with index opt. This table shows that for r = 0%
and r = 1% we get an increase of excess journey time compared to the original timetable
of respectively 42% and 12%. For r larger than 5% our model manages a decrease of
between 5% and 7%. We conclude that, for this system of 26 trains and 12 OD pairs,
optimisation with our model is able to quickly (in 600 seconds) reduce the excess journey
time significantly (> 5%) compared to a manually constructed timetable as long as the
fraction r is also significant (≥ 5%). If r is very low (≤ 1%), the excess journey time
terms in the objective function have insufficient weight to strongly influence the solution
and those few r passengers will experience excess journey times that are higher than in a
manual constructed timetable. Other terms then dominate the optimisation of the total time
which is still reduced. This proves that our added excess journey time model serves its basic
purpose.

soli r(%) 0(1) 1 5 10 50 100

sol1
MIP gap (%) 16.6 59.4 37.9 65.2 24.9 15.7

computation time (s) 13 102 48 182 59 242

solend,opt

comp. time=600s⇒ gap (%) 0.65 1.64 1.83 2.62 4.36 5.74
UO,orig 23774 23774 118871 237742 1188710 2377419
UO,opt 34098 26648 112036 226063 1101965 2217687

ratio 1.43 1.12 0.94 0.95 0.93 0.93
UD,orig 23469 23469 117344 234688 1173442 2346884
UD,opt 32947 26386 110901 223033 1093150 2228194

ratio 1.40 1.12 0.95 0.95 0.93 0.95
UO+D,orig 47243 47243 236215 472430 2362152 4724303
UO+D,opt 67045 53033 222936 449096 2195115 4445882

ratio 1.42 1.12 0.94 0.95 0.93 0.94
excess journey time reduction (%) -42 -12 6 5 7 6

Table 3: Total origin-, total destination- and total expected excess journey time U over the
OD-pairs of table 2. Corresponding original to optimised timetable excess journey time
reductions, MIP gaps and computation times. sol1 is the first feasible solution and solend
the one at the set time limit.

4.2 Comparing Soft with Hard Spreading

If one wants perfect temporal spreading of alternative trains, with all si = T/N , for a set
of given OD pairs, we additionally impose

∀(O,D) : ∀i ∈ IN : si = T/N. (17)
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soli r(%) 0 1 5 10 50 100

Soft spreading at Origin and Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 0.83 3.57 7.88 8.18 4.74 5.98
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 25612 144050 328453 1189351 2516351

ratio 1.00 0.92 1.04 1.19 0.86 0.91
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 25095 140854 326685 1177353 2429862

ratio 1.00 0.92 1.03 1.19 0.86 0.89
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 50707 284904 655138 2366704 4946213

ratio 1.00 0.92 1.03 1.19 0.86 0.90
excess journey time reduction (%) 0 8 -3 -19 14 10

opt. total time reduction (%) 15.42 15.34 15.17 15.03 15.31 14.96
solend:eval post-opt. evaluation total time reduction (%) 4.6 6.26 5.68 4.81 3.71 4.92

Hard Spreading at Origin and Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 68.07 71.56 66.9 64.75 51.64 39.36
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.76 0.76 0.76 0.76 0.76
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.77 0.77 0.77 0.77 0.77
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 42120 210603 421205 2106026 4212052

ratio 1.00 0.76 0.76 0.76 0.76 0.76
excess journey time reduction (%) 0 24 24 24 24 24

opt. total time reduction (%) 6.89 5.64 7.93 6.79 6.84 6.28
solend:eval post-opt. evaluation total time reduction (%) 5.24 3.68 6.02 4.96 4.61 3.72

Hard Spreading at Origin and Soft Spreading at Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 28.15 31.0 35.59 30.45 21.59 13.59
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.76 0.76 0.76 0.76 0.76
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 22979 115029 229787 1176459 2278535

ratio 1.00 0.84 0.84 0.84 0.86 0.83
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 44039 220330 440389 2229472 4384561

ratio 1.00 0.80 0.80 0.80 0.81 0.80
excess journey time reduction (%) 0 20 20 20 19 20

opt. total time reduction (%) 14.55 14.41 14.06 14.24 14.23 14.7
solend:eval post-opt. evaluation total time reduction (%) 4.83 3.78 4.07 4.23 3.63 3.27

Table 4: Effects of soft, hard and hard-soft spreading enforcement at Origin and Destination
for 26 trains. OD spreading threshold=1000, no transfers.

The existing permutation matrices and objective function terms defined before can still
reside in the model and continue to fulfil their purpose of correctly measuring the ordering
of train alternatives and excess journey time. To investigate the effects of hard versus soft
spreading, we compared three cases, where we allow 1200 seconds of optimisation time for
each. The first case is one where we apply soft temporal spreading as before on origin and
destination side, so by the model without equations (17). The second case is one where
we enforce hard spreading via equations (17) on both O and D side. In the last case we
apply hard spreading on the origin side, but soft spreading on the destination side. Note
that the MIP gaps of methods with additional hard constraints are typically not reduced as
quickly as methods without these. So we compare solutions for these three cases from the
fair standpoint of what can be achieved in equal computing times.

Table 4 gives the results of these experiments. First of all, in the top third of the table,
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for soft spreading at origin and destination, it shows that a total time reduction during op-
timisation of around 15% is again achieved. However, when doing a post-evaluation with
all excess waiting time associated with the 12 OD-pairs, we get a weaker reduction of total
expected time from the original to the optimised timetable in the range of 3.71% to 6.26%.

When forcing spreading the hard way, on both origin and destination side, the middle
part of Table 4 shows that we get systematic savings of 24 percent in excess journey time.
This is the same for all values of r, which is logical. Since the excess journey time is forced
to the minimum possible here, this is also higher than the savings of around 15% for the
soft spreading technique. However, the reductions in total time range between 3.68% and
6.02%, and so, are similar to the soft spreading technique. This means that the increase in
reduction from 15% to 24% in excess journey time has been lost in other time components
of the objective function. In fact, more ride and dwell supplements have been added for
trains between O and D for all train alternatives to match the strict requirements of equal
spreading on both ends. So these trains become ’overstretched’.

To try and avoid this effect of overstretching trains, we now enforce spreading in the
hard way on the origin and in a soft way on the destination side. The lower third of table 4
shows the results. We find that the excess journey time reduction is around 14.5% and the
total time reduction is in the range 3.27% to 4.83%. This is comparable to the results of the
approach with soft enforcement of temporal spreading in the upper third part of the table.

We conclude that the three approaches give similar reductions in total time but the ap-
proach of hard constraints on both sides gives a strong bias towards concentrating mainly on
the reduction of excess journey time with the negative consequence of increasing expected
ride and dwell time more than in the other two cases. For these experiments, which do not
consider the component of expected transfer time, as for the highest total expected time re-
duction at post optimisation evaluation, there is no clear winner method yet. Table 4 shows,
for each value of r, the highest percentage for this time reduction as underlined.

4.3 Adding Transfers

In the previous sections, we studied the minimisation of the excess journey time cost. We
explicitly removed all transfer time costs from the objective function to avoid they would
bias the obtainable reduction percentage of the excess journey time. We now add transfer
time terms in the objective function and will see if our model is then also still able to
reduce the total expected passenger time, including excess journey time and transfer time.
The results are summarised in figure 4. To most clearly show the excess journey time
component, in each case, r is set to 100%. Each of the six pictures shows a bar graph for the
original timetable on the left and the optimised timetable on the right. We consider the same
three cases as in the previous section and so, the organisation of in three rows of figure 4 is
similar to that of table 4. The upper third represents the optimisation with soft enforcement
of spreading on both O and D side. The middle third shows the optimisation with hard
enforcement of spreading on both O and D side. The lower third shows results for hard
enforcement of spreading on the O side and soft enforcement of spreading on the D side.
The left half shows what is reached during optimisation (on the linearised objective function
over the selected portion of OD-pairs for spreading and the selected transfers). The right
half shows the evaluation of the original, non-linearised objective function on all OD-pairs
and on all transfers and represents the end result on which each method should be evaluated.

In all cases, the dark yellow blocks are summed minimal ride and minimal dwell times.
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Figure 4: Effects of soft, hard and hard-soft spreading enforcement at Origin and Desti-
nation for 26 trains and adding transfers. OD Spreading threshold=1000, transfer thresh-
old=210, computation time=1200s. Left bars are for the original timetable and right bars
for the optimised timetable. Note the bigger ride and dwell expected time components on
the middle row, representing hard spreading on O and D side.
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These are constant and cannot be reduced during optimisation. Any blue shaded block rep-
resents an action that has its time convoluted with the ’preceding’ ride action (Sels et al.,
2011). The (blue shaded) light yellow part represents the summed convoluted ride and dwell
supplement times. The (blue shaded) green block corresponds to time attributed to passen-
gers entering and the red block to passengers leaving the transportation system. Orange
(blue shaded) blocks represent transfer time. Dark orange is the minimum transfer time and
is supposed to be 3 minutes everywhere. Light orange stands for the total expected passen-
ger transfer time due to the transfer supplements. This includes a penalty of 1 hour in case
the transfer is missed. In the left column, there are 745 transfers contributing, which are
the ones considered during optimisation. In the right column, all transfers are considered
during evaluation. The (not blue shaded) light purple colour indicates expected knock-on
time, also passenger weighted (Sels et al., 2013a), between subsequent trains on the same
infrastructure resource. Brown blocks stand for excess journey time for O and D for all 12
OD pairs together, in the left column. All 7601 OD-pairs are evaluated for excess journey
time in the right column. By optimising the timetable, only the light yellow, light orange,
light green, light red, purple and brown parts can be shrunk The dark yellow, dark orange,
dark green, dark red parts correspond to action minima and are the same in any timetable,
so cannot be shrunk.

In the upper-left figure, from the original timetable to the optimised one we get a total
time reduction of 8.87% during optimisation. If we call the left bar 100, the right bar
represents 100-8.87=91.13. The brown excess journey time component is slightly increased
with respect to the original timetable, in absolute terms, from 6.57 out of 100 to 7.95%
of 91.13 = 7.2. The transfer time is also growing from 4.16 to 5.87% of 91.13 so 5.35.
However, the light-yellow-coloured ride and dwell supplements are strongly reduced from
12.17 out of 100 to 4.10% of 91.13 so 3.74. The decrease of ride and dwell supplements
more than compensates the slight increase of expected excess journey time and expected
transfer time. The net result is that total expected passenger journey time decreases.

In the left figure of the middle row, representing hard spreading enforcement on original
and destination side, we see that the total expected time reduction is slightly less, 6.28%.
So the height of the right bar-graph corresponding to the optimised timetable now repre-
sents 100-6.28=93.72. However, the brown block representing excess journey time is now
reduced, from 6.57% down to 5.36% of 93.72=5.02. The orange transfer component grows
from 4.16% to 6.91% of 93.72=6.48, a bigger increase compared with soft spreading en-
forcement. The ride and dwell supplements are reduced from 12.17 to 7.31% of 93.72 so
6.85 which is substantially more than the 3.74 reached with soft spreading enforcement.
Soft enforcement reaches 8.87% total expected time reduction while hard enforcement
reaches only 6.28%. Since total time reduction is the end goal, from this observation, soft
enforcement is clearly preferable. The full evaluation in the right half of the middle row
of figure 4 shows that also when including OD pairs and transfers with fewer passengers
than the ones considered in optimisation, the results are similar and even amplified. The
reduction is 6.55% for soft enforcement but only 3.72% for hard enforcement of spreading.

On the bottom row, we find the figures corresponding to the optimisation with hard
spreading enforcement on the origin and soft enforcement on the destination side. The re-
duction of total time the optimisation achieves is a remarkable 13.51%. This is significantly
better than the other approaches which reached 8.87% and 6.28% total expected time re-
duction. The excess journey time goes from 6.57 on 100 to 6.04 on (100-13.51)=86.49 so
5.22. In absolute terms this is very close to the 5.02 strict spreading on both sides achieves.
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Expected transfer time is reduced from 4.16 on 100 to 3.39 on 86.49 so 2.93. This is al-
most the double reduction of the 5.35 and 6.48 we get in the other spreading approaches.
Ride and dwell supplements are reduced to 4.90% of 86.49 so 3.54. Again this is better
than the 3.74 and the 6.85 we saw in the other approaches. So we get better optimisation
results when enforcing more hard constraints. Normally, when keeping the same objective
function, imposing extra constraints to a model cannot result in a better ’optimal’ solution.
But here, the solver handles the model with the extra constraints faster than the one without.
Indeed, in our cases the optimal solution is not reached yet by the solver, which is indicated
by the MIP gaps presented in the left half of figure 4. From top to bottom, at 1200 seconds,
soft spreading achieves a gap of 47.16%, hard spreading a gap of 57.62% and mixed spread-
ing a gap of 31.75%. When we increase the computation time limit to 3600 seconds, the
respective gaps become 41.9%, 58.33% and 31.54%. So between 1200 seconds and 3600
seconds, only the soft spreading model still significantly improves its solution. But even
the best result for mixed spreading at 1200 seconds is not beaten at 3600 seconds by any of
the two other methods. Note that In all cases, both for 1200 seconds and 3600 seconds, the
bound is the same (within a margin of 0.3%), so gaps are comparable.

In the evaluation of all OD-pairs on excess journey time and all transfers in the right
figure on the lower row, we notice a 9.75% net reduction is achieved (in 1200 seconds).
Again, this is significantly better than the 6.55% and 3.72% of the other approaches. One
of the reasons is that transfer time is now slightly reduced instead of significantly growing.
We conclude that, once transfers are included, spreading the hard way on the origin and
spreading the soft way on the destination (or probably also the reverse) is the preferable
tactic for achieving the best results in the shortest time on this network of 26 trains.

4.4 Adding more OD-pairs for Spreading

For the same network of 26 Inter City trains, we now investigate the sensitivity of solution
quality and computation time to the amount of OD-pairs in the model. We reduced the OD-
threshold for consideration in the model of 1000 passengers per morning peak, in steps of
100, as such optimising over more and more OD-pairs. The transfer threshold is set back
to 2000, hoping for low computation times. For each OD-pair, we enforce strict optimal
spreading on the origin side and soft spreading via the objective function on the destination
side, since this seemed the most promising technique in the previous section.

soli OD-threshold for spreading 900 800 700 600 500 400
# OD-pairs in opt.(N ≥ 1) 18 24 36 56 90 128
# OD-pairs in opt. (N > 1) 14 16 22 24 30 31

sol1
MIP gap (%) 23.2 50.1 38.2

computation time (s) 52 107 253

solend,opt

MIP gap (%) 13.2 14.3 17.13
computation time (s) 1200 1200 1200 2400 2400 2400

excess journey time reduction (%) 20.24 20.03 20.72
opt. total time reduction (%) 14.69 14.59 14.10

solend,eval
transfer time reduction (%) -240 -234 -239

post-opt. evaluation total time reduction (%) 4.38 4.65 4.72

Table 5: Effects of adding more OD-pairs for temporal spreading to the optimisation model.
26 Inter City trains. Computation times are 1200s and 2400s.

The results are given in table 5. For the cases F=900, 800 and 700, models are con-
structed which perform temporal spreading of at least 2 alternative trains of respectively
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14,16 and 22 OD-pairs. These models could all be optimised in 1200 seconds. Over these
cases, the MIP gap achievable in 1200 seconds rises, yet the reduction of total expected
waiting time stays fairly stable around 14%. The end result reduction when evaluating over
all OD-pairs and all transfers increases somewhat from 4.38% over 4.65% to 4.72%.

For the cases F=600, 500 and 400, models are constructed that perform spreading on
respectively 24, 30 and 34 OD-pairs with more than one alternative train. However, the
imposed time limit of 2400 seconds did not suffice to solve these models.

4.5 Scaling Up to a Larger Network

We tried the approach of soft spreading for both O and D on a network of all 74 Inter City
trains as they are planned for 16/12/2014. The thresholds for OD-pairs to be considered in
optimisation was again set to 1000 and the transfer threshold to 210 passengers per morning
peak. The required gap was set to 95%. This did yield a resulting timetable after about 26.7
hours. Optimisation reduced total expected passenger travel time by 2.76% but post evalu-
ation on all OD-pairs for spreading and all transfers gave an increase of 6.48%. Decreasing
the required gap below 95% could possibly yield a better timetable, but at the expense of
more computation time. Increasing to systems with more than 74 hourly passenger trains
did not result in a solution yet. Since our MILP model without excess journey time can be
solved for all Belgian passenger trains in about 2 hours (Sels et al., 2014), we conclude that
specifically our excess journey time model is not easily scalable yet to larger networks.

5 Conclusions and Further Work

For passengers with random arrival behaviour, we integrated the expected excess journey
time cost into our previous PESP based timetabling MILP model (Sels et al., 2014). This
also required derivation and integration of extra constraints in our model. Our objective
function which represented total expected journey time is now extended to also include
excess journey time for all passengers. This paper shows that this model is indeed still able
to reduce the total journey time, while it also reduces each of the separate components:
ride-dwell supplements, knock-on time and excess journey time as well.

We were unable to solve the model for the network of all passenger trains in Belgium
though. Possibly restricting the range of integers present in the formulation of the excess
journey time cost could be a remedy for this problem. Alternatively, our high computa-
tion times could potentially be reduced by the addition of special cycle sets or a column
generation approach. Also, a multi-module PESP formulation approach could be explored.

Incorporating the secondary effect of the waiting time that passengers experience when
they miss the train they intended to depart with could make the model even more realistic.

The missed transfer penalty of cycle time T, currently assumed in the model, could now
also be adapted as follows. If the transfer takes the transferring passenger on an OD-route
that is contained in the optimised OD-pair spreading set, the N trains can be assumed to be
well-spread, certainly if hard spreading is imposed. So the penalty for missing a train can
be assumed to be about T/N in the average case. This would make a more realistic transfer
model and the transfer time component would make up a smaller portion of the total time.
Since it typically still grows during optimisation, the total time would be further reduced.
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2.7 Practical Macroscopic Evaluation and Compar-
ison of Railway Timetables

Full paper presented at EURO Working Group on Transportation (EWGT),
Delft, The Netherlands, 14-16 July 2015

Our tool for timetable optimisation, RhinoCeros, normally takes in an original
timetable, extracts the line planning and reoptimises the timing for it, producing
another timetable. It then also evaluates both the original timetable and
the automatically produced ’optimised’ one and writes out a comparative
report. However, we can also use it in a mode that skips the optimisation and
just evaluates the original timetable. By applying the evaluation function of
RhinoCeros on two different input timetables, and combining the outputs, it is
possible to obtain a comparative evaluation of two given timetables. This is what
is described in the following publication for two manually created timetables
supplied by Infrabel.

It is found that the second timetable (T2) reduces the total expected passenger
journey time by 2.47% compared to the first one (T1). The transfer component
in this total went from 10.48% of the total in timetable T1 to 7.44% of the
total in timetable T2, an effective reduction in absolute terms of 31%, so
transfers were better planned. From the reduction of the total planned sum of
passenger weighted minima of ride and dwell times, we conclude that there is
also an improvement in line planning. Roughly one third of the 2.27% has to
be attributed to line planning. Knock-on delays remained the same. In total,
more supplements were planned in T2 than in T1, but they did not result in
less passenger time. This means that they were not added in the amount and
places where they would maximally benefit passengers, as our tool, RhinoCeros
would do.

This paper also explains that by utilising our method of minimising expected
passenger time in practice, the quality criteria for timetables as used by other
researchers are obtained. We summarise these performance criteria here and
indicate why our comparative method properly evaluates them.

• A realisable timetable is one that plans enough time for all ride and dwell
activities. This means no negative supplements on top of the minimal
necessary times are planned. Many timetables in Europe are not realisable.

• A conflict-free timetable is one where supplements on top of the headway
minimal time between any two consecutive trains are all positive. In the
strict sense, this has to be analysed on a microscopic level. We and many

http://www.LogicallyYours.com/ED2015.pdf
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other researchers and practitioners use a macroscopic level approximation
and require a 3 minute minimal headway time.

• When a timetable is realisable and conflict-free it is called feasible.
Realisability, conflict-freeness and so also feasibility are deterministic
properties of a timetable. This means it is possible to evaluate them
without considering the (stochastic) expected primary delays and their
delay propagation consequences. This also means that the answer to the
question whether a timetable is feasible (or realisable or conflict-free) is
ether yes or no.

• A robust timetable is a timetable that can absorb common primary delays.
This means that in practice, trains will still run according to the timetable
even if they experience common small delays. This is accounted for while
planning the timetable by providing sufficient time supplements with the
aim to absorb these primary delays to a certain degree.

• An efficient timetable is one that delivers low travel times to passengers.
For this to be realised, time supplements intended to provide robustness
cannot be extremely high. Efficiency and robustness are stochastic
properties depending on stochastic primary delay distributions. Since
our objective function contains these primary delay distributions and also
their effects in the network on secondary delays, our evaluation function
captures the balance that a timetable should realise between efficiency
and robustness, so between small enough and large enough supplements
respectively. For stochastic properties of a timetable, the answer to the
question whether a timetable satisfies this property cannot be a simple
yes or no answer and will always be ‘to a certain degree’. However,
when comparing two timetables, one timetable can score better on these
properties than the other.

• A stable timetable is one where negative supplements are tolerated, as long
as sufficiently positive supplements are present elsewhere in the timetable
that are able to absorb the delays caused by the negative supplements.
When we generate rather than compare timetables, stability is satisfied
via the guarantee that our method generates (macroscopically) feasible
timetables. So stability is not obtained by the objective function but
by the hard constraints in our model. When we evaluate or compare
timetables, non-stability is penalised by the fact that when we read in
the timetable, we automatically adapt it by replacing any negative ride
or dwell supplement by a zero supplement. This corresponds to what
effectively happens in reality, at best, as well. The consequence is that in
reality as well as in our evaluation, headways between trains may not be
sufficient anymore. This will lead to a knock-on delay, both in reality and
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in our evaluation function and leads to increased expected passenger time,
both in the model and in reality. So, on a macroscopic level, stability
is properly accounted for in our evaluation. Stability is essentially a
stochastic property of a timetable. One can avoid to have to analyse
stability by requiring the timetable to be feasible. Stability follows from
feasibility, but not the other way around.

• A resilient timetable is one that is able to being adjusted easily to larger
delays than can be absorbed by the robustness of the timetable. So a
timetable can be claimed to be resilient only if it is specified what real time
interventions of traffic control (essentially real time timetable changes)
will be taken in real time to make it resilient. Our reason for expecting
that resilience will be better in the timetables we generate is that our
timetables have a significantly lower amount of very low headway times
than the existing timetables. We expect that this will mean that traffic
control will have to intervene with fewer train order changes. When we
evaluate or compare timetables, resilience is not directly accounted for,
since we do not include the resiliency measures taken in practice.
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Abstract

From the perspective of passengers, a railway timetable can be called better than another if its expected passenger time is lower
in practice. So, we constructed an analytical function that evaluates a timetable on this criterion: total expected passenger time
in practice. Other methods to evaluate timetables invariably describe different performance indicators: realisability, conflict-
freeness, stability, efficiency, robustness, resilience, but mostly do not indicate how to score and weigh these different performance
indicators. This means that when comparing two timetables, deciding which one is preferable remains hard. Our objective of
expected passenger time in practice resolves these issues.

Also, compared to a simulation approach, our analytical stochastic approach has a major practical advantage. It decouples all
actions (ride, dwell, transfer, knock-on) in the timetable and in doing so, can evaluate the expected time in every action separately
and simply add all expected times of composing actions afterwards. So the exponential amount of combinations of primary delays
over all actions that standard simulation packages explicitly iterate over is dealt with implicitly and much more efficiently. This
makes that the evaluation made by our method requires less time.

Our method is applied to two timetables of all passenger trains in Belgium. Both timetables were manually planned and then put
into operation in practice. With our method, we can conclude that one timetable has considerably lower total expected passenger
time in practice than the other one. We also show that this is caused mainly by better passenger transfer planning, but also partly by
a changed line planning. Comparison of the reported results for both timetables also suggests that advantages of each could maybe
be combined.
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1. Introduction

Whenever a railway company updates or completely overhauls a timetable, it is highly important to evaluate the new
timetable and compare it to the previous one, before the new timetable is implemented in practice. Today, evaluation
methods are typically restricted to simulation methods that do not report expected passenger time but mainly focus
on train time, ignoring passenger numbers in ride, dwell and transfer actions and in knock-on delays (Weston et al.,
2006; Parbo et al., 2015). More recently, this shortcoming has been remedied by some (Weston et al., 2006; Kanai
et al., 2011). Also, often no measuring of positive effects of temporal spreading of alternative trains is present. So
these methods do not answer some relevant questions that should be asked when developing and evaluating a new
timetable.

Questions to be asked about the correctness of any timetable are: Are all minimum ride, dwell, transfer and
headway times respected? Questions about whether the new timetable is an improvement compared to the previous
one are: Is total expected passenger time in practice reduced? Is the average probability for passengers of missing
transfers reduced? Are secondary delays for passengers diminished?

In this paper, we provide a methodology and a tool to answer all these questions. The output is presented graphi-
cally, so that the effects - both in size and in sign - of differences between timetables become more visually obvious. As
such, strong and weak points in the new timetable, for example better transfer planning or a worse headway planning,
will be noticed quickly. Our method is applied to two different timetables, both of all passenger trains in Belgium and
shows that the newer of the two timetables is indeed improved. We believe our tool is innovative in the sense that it
shows how much better or worse a timetable is for passengers and on which aspects. It also pinpoints where expected
passenger time is spent: during ride, dwell, transfer or knock-on actions. In an early stage, our evaluation method
could indicate where to further improve the timetable and in the end it could deliver crucial arguments to convince
anyone about the benefits of implementing the new timetable in practice.

Section 2 compares traditional timetable evaluation methods with our approach. Section 3 demonstrates the results
of our evaluation approach applied to two manually constructed timetables, T1 and T2 as received from Infrabel,
the Belgian infrastructure management company. T2 is a reworked version of T1. Due to confidentiality issues, we
cannot give more details about these timetables. Sections 4 and 5 conclude this work and indicate some potential
further work.

2. Comparing Timetable Evaluation Methods

Both our quality criterion for and our practical implementation of evaluating timetables are quite different from
the traditional criteria and practical methods. So, in this section, we first contrast and compare them. We then show
that our approach has quite some theoretical as well as practical advantages and next, explain that we cover most
performance indicators present in the traditional approaches.

2.1. Traditional Approach: Estimating Performance Indicators by Simulation, mainly Microscopic

Goverde and Hansen (2013) propose a list of timetable performance indicators and derived quality levels. Widely
used terms for these indicators are realisability, conflict-freeness, stability, efficiency, robustness and resilience. We
are convinced that these six performance indicators should actually be considered as means to obtain the final goal
of serving the passengers in the best possible way. According to us that corresponds to minimising the expected
passenger time in practice. The performance indicators realisability and conflict-freeness can be checked by verifying
that the minima for ride and dwell respectively for headways are respected. Together, realisability and conflict-
freeness could be seen as operational feasibility. So these two criteria are easy to check. Contrary to these, the four
other performance indicators depend on primary delays and on how these are propagated in the train network. Because
of the stochastic nature of primary delays, timetable evaluation on these criteria is usually done via simulation, where
a single simulation randomly takes one sample for each primary delay distribution and then applies these combined
delays on the system and propagates them to secondary delays on affected trains. This way, simulations can calculate
total delays. As an example, a low total delay then indicates a good robustness against these primary delays. For
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large networks, to cover all cases or rather to obtain a representative collection of all cases, this means that many
simulations have to be performed.

Barber et al. (2007) give a list of available software simulation packages (e.g.: RailSys of RMCon, SIMONE of
NS). More recently, quite some more software packages have become available (e.g.: LUKS of ViaCon, and OnTime
of TrafIT Solutions & ViaCon). Some packages simulate on the macroscopic or mesoscopic level, but quite some
also simulate on the microscopic level. This means that they will detect conflicts between trains in the timetable, also
inside stations, on routings or platform tracks and via the application of time shifts, they then calculate secondary and
total delays. These conflicts arise due to primary delays in practice or due to the timetable not being realisable.

2.2. Our Approach: Expected Passenger Time Evaluation and its Advantages

Our evaluation approach is entirely macroscopic. Slightly simplified, it consists of evaluating the expected pas-
senger time in practice for every action in the timetable (ride, dwell, transfer, knock-on delay) independently. This
is possible by application of the expected passenger time per action which is an analytic expression of only the time
supplement variable to be assigned to that action. For a given timetable, each action’s supplement is known, so also
its associated expected passenger time is known. The total expected passenger time of the whole timetable is then
simply the sum of all expected passenger time of each of its actions. A complete derivation of our evaluation function
can be found in Sels et al. (2013b,a, 2015b), where it plays the role of objective function in an optimisation context.

The more global focus on expected passenger time in practice, also shared by Dewilde et al. (2011) instead of
the direct focus on stability, efficiency, robustness and resilience has at least three advantages. (i) Since minimis-
ing expected passenger time improves stability, efficiency, robustness and resilience, it is a combined performance
indicator and the problems with evaluating a timetable over multiple objectives and setting priorities for objectives
are resolved. (ii) Communicating that a new timetable has some percentage less expected passenger time in practice
than the previous one is a very meaningful and clear way to communicate about timetables to management and pas-
sengers. (iii) We can separately evaluate the expected passenger time of every planned action: ride, dwell, transfer,
knock-on delay, considering only its own primary delays. Indeed, the total expected passenger time in the system is
then simply the sum of all expected passenger times of its constituent components. This means that, for evaluation
or optimisation, we can decouple all actions and so do not suffer from having to make combinations of samplings of
primary delays over all actions. There is one underlying assumption here, and that is that primary delays of different
actions are independent. But in fact, that is also what most simulation packages assume, since they allow primary
delay distributions to be entered per action (ride, dwell) and in simulations then combine primary delays over different
actions. Only some research, like Kroon (2008) has taken great care of not assuming any primary delay dependencies
by strictly keeping together all delays as measured in practice of one train occurrence as one ’trace’. Individual delays
of different traces of one train are then not combined with each other in any simulation. This means that all unknown
delay dependencies existing in reality, if there would be any, are preserved in the simulation or optimisation. The idea
of avoiding the problem of finding a representative set of simulation traces by taking a more analytical approach is
similar to what is done in the robustness analysis tool PETER, as described in Soto y Koelemeijer et al. (2000).

Note that our evaluation function - expected passenger time in practice - is already present as the objective function
of our Periodic Event Scheduling Problem (PESP) Mixed Integer Linear Programming (MILP) model as published in
Sels et al. (2013b,a, 2015b). In these papers, the goal was always to automatically find a new timetable that minimises
the objective function. However, in this paper, we do not optimise a timetable, but compare two already existing ones.
This means that we only need to evaluate the evaluation function for both timetables and see which timetable results
in the lowest value to know which one is better for passengers.

2.3. Our Timetable Evaluation Method Contains Most Traditional Performance Indicators

To show that, with our evaluation function, we cover most of the traditional performance indicators for a timetable,
and one more, we discuss these performance indicators one by one and relate them to our evaluation function.
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2.3.1. Realisability
First of all we evaluate both timetables on realisability. This means that we check whether the time planned for

each ride and dwell action is at least as large as is minimally required. In other words, ride and dwell actions should
be assigned positive time supplements on top of the minima required for them. Our tool performs these checks.

2.3.2. Conflict-Freeness and Stability
Conflict-freeness, also sometimes simply called feasibility, means that in the timetable, without assuming delays,

there are no conflicts between trains. On the macroscopic level this means that planned headways, between train
departure times on the same resource and similarly between train arrival times, are larger than an assumed safe
minimum. A common value for this macroscopic minimum is 3 minutes. Stability is defined as having sufficient time
supplements, on top of the headway minimum time, between subsequent trains on the same track section to absorb
delays on the first train. To find out where stability bottlenecks occur, this property can be analysed over every cycle
in the event activity graph corresponding to the timetable (Soto y Koelemeijer et al., 2000). The event activity graph
has a node for every train arrival or departure time in a station, representing an event and has an edge for every action
(ride, dwell, transfer, headway) between two events representing an activity. In our objective function of expected
passenger time, we do not explicitly check every cycle for this quality criterion, but for every inter-train edge (knock-
on or transfer edge), we penalise a supplement that is chosen too low via the expected passenger time of this edge.
This guarantees that every cycle will have a reasonable amount of supplement for it to become stable. This means
that we do not only answer the question if every cycle has enough supplements present on its edges but also obtain a
global score for how bad the stability is in terms of the summed expected passenger knock-on time and transfer time.
If for some headway edges, the timetable would not be feasible, our objective function will give a very high penalty
in terms of expected knock-on time. So in our evaluation method, both conflict-freeness and stability are handled by
the terms of expected passenger knock-on delay. Note that, since we treat transfer edges similarly to knock-on edges,
also with a minimum of three minutes but with a different evaluation function, we also obtain a feasibility for transfers
which we could call transfer guarantee and also obtain a transfer stability.

2.3.3. Efficiency versus Robustness
The total expected passenger time in practice is also the property we use to evaluate both efficiency and robustness

together. Very low supplements will make the timetable efficient for passengers, but not robust against primary delays
so passenger travel times will vary. Very high supplements wil make the timetable very robust but not efficient.
In this sense, we think it is not very practical to try to measure efficiency and robustness separately. Our method
makes the trade-off in a passenger weighted way, because both efficiency and robustness are more important for trains
with many than with few passengers. As for robustness against potentially occurring primary delays, we assume the
primary delays on ride, dwell and transfer actions to occur according to a negative exponential distribution, as do
Meng (1991); Goverde (1998); Vansteenwegen and Van Oudheusden (2006). We further assume the average ‘a’ of
these distributions to be a certain percentage of the minimum time of that action. The value of ‘a’ is typically chosen
in the range of 1% to 5% Goverde (1998). In this paper, we assume a = 2%.

2.3.4. Temporal Spreading of Alternative Trains
In Sels et al. (2015a), it is shown how the inter-departure waiting time between alternative trains from a passenger’s

first station to this passenger’s arrival station depends on the temporal spreading of these trains’ departure times.
So, this can be different in different timetables as well. Sels et al. (2015a) also indicate, that only some categories
of passengers benefit from good temporal spreading. We set the percentage of passengers that do benefit to ‘r’.
Traditional simulators do not report on the level of temporal spreading and to which degree it benefits passengers,
because traditionally, spreading is either enforced as a hard constraint for all passengers or not at all. However, quite
some research papers did concentrate on evaluating the amount of inter-departure waiting time induced by a timetable
(e.g.:Zhao et al. (2013)). Our method evaluates temporal spreading with the function described in Sels et al. (2015a).

2.3.5. Resilience
A timetable that is resilient against primary delays and disruptions recovers quickly, in a number of timetable

periods, to its planned state without delays thanks to (i) good supplement choices that, to some degree, prevent knock-
on delays and (ii) real time interventions of dispatchers (Goverde and Hansen, 2013). This means that, to properly
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evaluate the expected passenger time associated with resilience, one needs to be able to model both the recovery
behaviour and also the precise dispatching rules. This is work that we did not address yet.

3. Results

We now apply the method as described in section 2.2 to the timetables T1 and T2. Both timetables have a planning
horizon of 1 year. They each contain around 200 hourly passenger trains. In total, for about a 1000 physical points,
being stations and stop places, train arrival and departure times are specified.

3.1. Realisability

Both in timetable T1 and in timetable T2, we find some cases where the process times assigned to ride actions are
smaller than the required minimal run times. Timetable T1 contains 823 such cases and timetable T2 reduced this
amount to 570 cases. Table 1 shows the size and amounts of these violations for both timetables. For timetable T1
there are 320 ride edges where the assigned process time is 6 seconds lower than the minimum allowed. The total
violation time for all violations together for timetable T1 is 1909 times 6 seconds, or 190.9 minutes. For timetable T2
this is 1084 times 6 seconds or 108.4 minutes. Of course, the degree to which this is problematic is proportional to
the number of passengers on the ride actions where these violations occur.

Table 1. Realisability. Reduction of the number and size of minimum runtime violations from timetable T1 to timetable T2.

timetable distribution: # actions with a violation per size of violation in seconds weighted sum (s) tot.# avg. (s)
6s 12s 18s 24s 30s 36s 42s 48s 56s 60s 66s

T1 320 219 126 93 24 27 3 6 1 3 1 11454 823 13.9
T2 277 155 84 37 11 2 2 2 6504 570 11.4

So realisability in terms of both number and size of violations improved from timetable T1 to T2. In practice, a
non-realisable timetable will not cause train collisions but will cause primary delays, even in the absence of any other
external factors interfering with the train and infrastructure system. Remark that the final goal should of course be to
have no such minimum time violations at all in the timetable. Note that realisability is automatically 100% achieved
for any timetable that is automatically produced by the optimisation method as described in Sels et al. (2015b).

3.2. Conflict-Freeness, Stability, Efficiency, Robustness & Temporal Spreading via Total Expected Passenger Time in
Practice

In fact, the minimum ride and dwell time violations mentioned in paragraph 3.1 should be solved first before one
can accurately evaluate passenger time. We achieve this by, before evaluation, correcting the assigned process times in
the timetable to the minimum required durations, whenever they are lower. This is also what will happen in practice.

For the case a = 2%, the total expected passenger time for both timetables is shown in figure 1. The left bar
indicates timetable T1 and the right bar indicates timetable T2. The vertical dimension represents expected passenger
time, also for its constituent components: ride (blue), dwell (yellow), transfer (orange), knock-on (purple). For dwell
and transfer time, all ride time of the ride action preceding it, is convoluted with it, which is what the blue shading
refers to. On the left of each bar, the percentages (T1.m and T2.m) indicate the ratio of the total expected passenger
time due to the minima (m) to its total bar height. On the right, the percentages (T1.s and T2.s) indicate the ratio of
the total expected passenger time due to supplements (s) to its total bar height. For each color, the minima are shown
in a darker tone of the color and the supplements in a lighter tone of the same color.

For the case r = 0%, we see that the total time reduction between timetables T1 and T2 amounts to 2.47%. This
is a considerable improvement. This 2.47% reduction can be attributed for 70.3% to better timetabling and for 29.7%
to a lower sum of minimum ride and dwell times. This latter part of the reduction is caused by the also changed
line planning associated with T1 and T2. This changed line planning can cause that more passengers could choose
a route with fewer ride and dwell actions or now even have a direct connection without transfer from their origin to
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Fig. 1. Reduction of 2.47% of total expected passenger time from T1 to T2. All time units are in 6 second multiples.

destination. Other causes of the decreased minimal ride and dwell passenger time could be the reduction of run time
minima by use of faster train material or the assignment of different train material on different lines (e.g. faster trains
on lines with more passengers).

Figure 1 also shows that the transfer component in timetable T1 was responsible for 10.48% of the total expected
passenger time, while in timetable T2 it only amounts to 7.44%. This corresponds to 1.687·106 min and 1.167·106 min
respectively in absolute numbers, which is a considerable reduction of 31%. This could be due to more people having
a direct connection instead of a transfer and also with better supplement planning for transfers. Figure 1 also shows
that the total knock-on time did not change much between T1 and T2. It also shows that, in expected passenger time,
more time is spent by passengers ’sitting out’ these extra supplements. The goal of these extra supplements should be
that the timetable becomes more robust and this should be visible in lower expected secondary delays. However, the
purple component, representing expected knock-on delay does not decrease from T1 to T2. The expected passenger
time spent in the ride and dwell supplements is 9.88% for timetable T1 and increases to 12.07% in the timetable T2.
This larger expected time is caused by, on average over passengers, larger planned ride and dwell supplements and is
intended to make the timetable more robust. If this higher robustness was obtained, it should be visible as a decrease
of expected knock-on delay time that at least offsets the increased expected passenger dwell and ride time. However,
as mentioned, the expected knock-on time does not decrease but remains roughly the same. Timetable T2 had as one
of the major goals the improvement of punctuality over timetable T1. To obtain this, larger ride and dwell supplements
were inserted. In practice, during implementation of timetable T2, it was indeed noted that punctuality, as measured
by Infrabel has risen with a few percentage points compared to during implementation of timetable T1. This could
be expected from the larger inserted ride and dwell supplements, but not from the expected knock-on delay which
stays similar from T1 to T2. Note that Infrabel’s punctuality measure currently only represents measurements at end
stations of train lines and in Brussels, when these trains are at least 6 minutes late. It also does not weigh trains delays
with affected passenger numbers. This could explain different findings between model and reality.
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Using the method described in Sels et al. (2015a), we also evaluated both timetables on inter-departure waiting time
between alternative trains and found that there is no considerable difference between these times for both timetables.
This means that, when we add this time component to the total expected passenger time, the total reduction percentage
will be somewhat smaller than 2.47%. However, we prefer to postpone detailed reporting of total expected inter-
departure and arrival time until it is clear what the value of ‘r’ is in practice.

3.3. Expected Passenger Transfer Time Improvement

Because the expected transfer time for all passenger together decreased considerably form timetable T1 to timetable
T2, we want to investigate how this was achieved in some more detail. We do this graphically in figure 2 by plotting
different histograms of transfer times, on the top row, per transfer action, on the middle row, per transfer passenger
in the planned domain and on the bottom row, per transfer passenger in the expected time domain. The left half
of figure 2 again represents results for timetable T1 and the right half for timetable T2. The top row shows that
there is little variation in planned time (minimum + supplement) assigned to transfer edges. The distribution is
indeed quite uniform. Note that the total number of planned train time is increased from timetable T1 to T2 by
(668115 − 573426)/573426 = 16.5%. One should not conclude yet that this is a deterioration, since, for all time
components, the expected passenger time domain instead of planned train time domain is the domain we should
evaluate a timetable in and these results are shown in the bottom row.

The middle row shows that, when looking at the planned time assigned per transfer passenger, a pattern starts to
appear. More specifically, transfers taken by many passengers tend to be assigned ’good’ supplement values. ’Good’
here means that the chosen supplements, together with the transfer minimum time, separate the arrival time of the
feeder train and the departure time of the connecting train, are neither too small and neither too large. Too small
would lead to a frequently missed transfer and our model penalises this with a waiting time of 1 hour for the next
connecting train. Too large would mean that too much time has to be spent waiting at a platform for the connecting
train. The middle row of figure 2 also shows that this good pattern is even better in timetable T2 than in T1. Indeed,
the average planned passenger duration went down from 8.02 minutes to 7.76 minutes. This decrease of total planned
passenger time (middle row) associated with an increase in total train time (top row) shows how important it is to weigh
with passenger numbers. It also demonstrates that human timetablers also take this into consideration. The bottom
row of figure 2 shows that in the expected time domain, the pattern is even more pronounced and the expected average
transfer duration per passenger goes down from 19.2 minutes to 15.8 minutes. This reduction is a big improvement.
The values 19.2 and 15.8 may seem large, but note that (i) this includes all possible (passenger weighted) transfers
and not just the ’important’ transfers from a restricted list and that (ii) our penalty of 1 hour for a missed transfer is
a worst case one. In line with these findings of improved transfers is that we also calculated that, for a = 2%, the
average probability for a passenger to miss a transfer is reduced from 14.41% in timetable T1 to 5.51% in timetable T2.
These calculations are based on a similar quick evaluation over all transfer edges, now not of the expected passenger
time function per edge, but of the analytical function representing the probability of missing a transfer. The average
probability of missing a transfer is then simply the passenger weighted average over all transfer edges.

4. Conclusions

As for our particular timetable evaluation methodology, we have shown that our evaluation function, expected
passenger time in practice, has quite some advantages. These are essentially derived from the fact that weighing
of different performance indicators is done in a natural way because all constituent components are expressed as
passenger time. These advantages are (i) the full timetable evaluation problem can be decomposed in evaluating
separate actions, (ii) the evaluation results of actions can be directly added, and ultimately, (iii) simulation is replaced
with simple addition.

As for the application on the Belgian timetables, assuming that for each ride, dwell and transfer action, the average
primary delay is 2% of the action minimum time, we can conclude that timetable T2 reduces total expected passenger
time by 2.47% compared to timetable T1. This is a considerable improvement. This paper also shows that this
2.47% improvement is caused for 70.3% by timetabling improvements, chiefly by improvement of passenger transfer
planning. Improved line planning is responsible for 29.7% of the 2.47% reduction. Under the same primary delay
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Fig. 2. Transfer time histograms for timetable T1 on the left and timetable T2 on the right. All time units are in minutes.

assumption, the average probability for a passenger of missing a transfer is reduced from 14.41% in timetable T1 to
5.51% in timetable T2. This is a huge improvement. The new timetable T2 has more expected passenger time spent
in ride and dwell supplements than timetable T1. So the question arises if, in timetable T2, these supplements can
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be reduced to the level of timetable T1 while still keeping the advantage of the reduced time spent in transfers of
timetable T2.

5. Further Work

As for our method of evaluation, evaluating the same timetables but for different values of the parameter ‘a’ would
be useful. Also, resilience of a timetable is not directly part of our method yet. This would require more research.

Our evaluation is conclusive about timetable T2 being preferable for passengers over timetable T1. When further
manual improvement of timetable T2 is required, the question arises how to give the user feedback on how to achieve
this. Answering this question is not easy. Indeed, indicating that, for example a transfer is badly planned, can be easily
done. How to improve the transfer locally can also be indicated easily. However, making a local change will almost
always affect other trains and it is generally hard to know if the potentially negative effect on other trains will not
outweigh the desirable positive effect of the improved transfer planning. How to give hints for manual improvement
could be considered in further research. However, note that via automatic timetabling optimisation, Sels et al. (2015b)
were able to reduce the expected passenger time by 3.81% in 2 hours of computation time, by only changing the
timetable and not the line planning. In the resulting timetable, expected knock-on time was decreased by about 50%
and expected time of ride and dwell supplements was decreased, but expected transfer time increased.
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Chapter 3

Platforming and Routing in
Stations

“Getting permission is harder than being forgiven.”

– Banksy

“... yet, going for it without permission

can just hit you unforgivingly harder.”

– Peter Sels

Currently, at Infrabel, when a timetable proposal is passed to them from their
main operator NMBS, Infrabel adds some more trains, like international trains
and freight trains from other operators. For the resulting macroscopic timetable,
it needs to be checked that the train arrival and departure times it specifies
can be realised also inside the stations. This depends on the available platform
tracks, on the routing variants between the open lines and these platform tracks,
on the dependency (crossing or equal) or non-dependency of these routing
variants and on the simultaneity of trains using these platforms and dependent
routing variants.
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The train platforming and routing problem is essentially a vehicle routing
problem (VRP). In the vehicle routing problem (Dantzig, Ramser (1959)), an
optimal set of routes is to be found so that a given set of vehicles can deliver to a
given set of customers. In our train platforming problem, we have a well known
set of routes and what we deliver to customers is ‘passengers’, or essentially,
the connectivity between station IN lines and station OUT lines. On top of a
classical VRP we also have dependent (equal or crossing) routes that no two
trains can use at any time.

The check if all trains can be platformed and routed is currently still performed
manually at Infrabel. Planning for a large station without any platform or
routing conflicts can take up to about two weeks even for an experienced human
planner and is error prone. Research is available that shows that automation of
this process is possible [3]. The question arises if we can use or/and improve
this research and create a tool for Infrabel that can automate the resolution of
these platform problems.

3.1 The Train Platforming Problem: the Infrastruc-
ture Management Company Perspective

Full Paper published in Journal Transportation Research, Part B: Methodological,
2014

We set up a model and implemented a tool for Infrabel, called Leopard. Leopard
is based on a Mixed Integer Linear Programming (MILP) model that contains
constraints forbidding any two trains to use the same platform at the same time.
It also contains constraints forbidding any two trains to use dependent routing
variants at the same time. The objective of Leopard is to platform and route
as many train occupations as possible in the given station. We apply a filter
to the train pairs, so that only for train pairs that can potentially hinder each
other, constraints are formulated. This saves model creation time as well as
model resolution time. The result is that Leopard can solve the average station
platforming problem in about 0.25 seconds. Leopard is also useable to estimate
station capacity. The user then supplies more train traffic that is expected
in the future up to the point that this extra traffic cannot be platformed or
routed anymore. At that point station maximum capacity is reached and is
reported. When major over-saturation happens, computation times increase
to some minutes per station. Using Leopard in this context gives Infrabel a
station capacity estimation tool which it did not possess before.

http://www.sciencedirect.com/science/article/pii/S0191261514000058
http://www.sciencedirect.com/science/article/pii/S0191261514000058
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a b s t r a c t

If railway companies ask for station capacity numbers, their underlying question is in fact one
about the platformability of extra trains. Train platformability depends not only on the infra-
structure, buffer times, and the desired departure and arrival times of the trains, but also on
route durations, which depend on train speeds and lengths, as well as on conflicts between
routes at any given time. We consider all these factors in this paper. We assume a current
train set and a future one, where the second is based on the expected traffic increase through
the station considered. The platforming problem is about assigning a platform to each train,
together with suitable in- and out-routes. Route choices lead to different route durations and
imply different in-route-begin and out-route-end times. Our module platforms the maxi-
mum possible weighted sum of trains in the current and future train set. The resulting num-
ber of trains can be seen as the realistic capacity consumption of the schedule. Our goal
function allows for current trains to be preferably allocated to their current platforms.

Our module is able to deal with real stations and train sets in a few seconds and has been
fully integrated by Infrabel, the Belgian Infrastructure Management Company, in their appli-
cation called Ocapi, which is now used to platform existing and projected train sets and to
determine the capacity consumption.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, train operator companies require more and more trains to be added on the existing infrastructure. For
infrastructure management companies, it is essential to determine a feasible platforming plan for all stations and junctions.
Each of these train platforming problems (TPPs) deals with assigning all trains in a station to the available platforms, in a way
to avoid conflicts on the platforms as well as on the routes from an incoming and to an outgoing line. Often, this platforming
process is still done manually. This means it is error prone, takes a lot of time and the result is not optimal. At Infrabel, the
Belgian Railway Infrastructure Manager, both cases of wrongly judging two routes as being in conflict and cases of wrongly
considering two routes as not being in conflict, have been noted. De Luca Cardillo (1998) illustrates how in a particular case,
platforming 242 trains in a station with 16 platforms requires 15 working days for an expert planner. In order to perform this
platforming task better as well as faster, we want to develop software to automate this process.
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In this paper, we focus on automatically platforming as many trains as possible from two train sets: an already opera-
tional set (current set) and a future set, based on the expected traffic increase. The way that infrastructure management com-
panies work today, is that they first construct a timetable and then try to platform all planned trains in the stations they visit,
respecting the planned platform time. So, for our platforming problem, we consider the timetable to be given. We do not
allow automatic changes in platform arrival and departure times. Trains that cannot be platformed will be put on a fictive
platform and arrive or depart from there via fictive routes.

Our platforming solution is a Mixed Integer Linear Programming MILP model that extends the model of Billionnet (2003)
with consideration of route duration differences, as well as with the fictive route concept. Thanks to the MILP method, the
fictive platform concept and our simple goal function, (i) our model always returns a usable solution, (ii) we can and do list
which trains cannot be platformed, and (iii) the gap also tells us how far our solution is removed from the optimal one, in
meaningful units of number of trains that could not be platformed. Moreover, for realistic traffic, we obtain the optimal solu-
tion in very low solver times and our system is integrated and used at Infrabel. Also, our goal function can be tuned to prefer
a solution close to the current one or otherwise optimize more progressively.

In the next section we summarize the existing literature about the train platforming problem. In Section 3, we first situate
our own TPP version amongst the TPP in the literature. Our detailed Mixed Integer Linear Programming (MILP) model is de-
scribed in Section 4. The last sections discuss the results, summarize the conclusions and hint at some further work.

2. Literature review

We refer to Caprara et al. (2007, 2011b,a) and Lusby et al. (2011a) for some recent surveys about the train platforming
problem (TPP). An earlier survey, with a larger scope of problems, but also describing train platforming problems, is due
to Cordeau et al. (1998).

An important categorization mentioned by Zwaneveld et al. (1996), Cordeau et al. (1998) and Lusby et al. (2011a) is
whether the TPP considers a system which is intended for use at the strategic (S), tactical (T) or operational (O) level. The
strategic level is concerned with platforming and possibly also routes for capacity estimation. At this level, one should eval-
uate the platform feasibility for a range of potential timetables and possibly also infrastructure change options. The tactical
level of the TPP tries to determine platforms for the timetable that is already decided. The importance of deciding on routes
becomes bigger here. The operational level TPP decides on platforms and routes in real time.

2.1. Strategic level TPP

Zwaneveld et al. (1996), Zwaneveld (1997, 2001) and Kroon et al. (1997) consider the strategic level TPP where they allow
multiple route variants for each direction-platform pair. They use as input, the current timetable with a set of possible time
shifts in minutes on arrival and departure time couples. They construct triplets, each consisting of a train-platform, a time
interval with a time shift and each dominating route (inbound, outbound or complete (for passing trains)). They pre-
calculate if pairs of the mentioned triplets conflict with each other or not. The result is a MILP model representing a node
packing problem. Reformulating some constraints as clique inequalities, they significantly reduce the number of constraints
and also solution time. The goal is to maximize the number of trains platformed. All platforming experiments for the time-
table without time shift variations could be solved in at most 85 s. Experiments including time shift variations required at
most 400 s on a 1996 SUN LX workstation running CPLEX 2.1. The system was integrated in STATIONS, software used at the
Dutch railways for timetable evaluation and capacity estimation. Some variants of the problem solved in Zwaneveld et al.
(1996) are reformulated in Kroon et al. (1997) as fixed interval scheduling problems.

Delorme et al. (2001) use constraint programming and its constraint propagation technique to calculate the capacity of a
railway subnetwork. The area studied is the Pierrefitte-Gonesse area north of Paris. Four combinations of mixed speed, high
speed, IC and freight train traffic are generated and their effect on capacity consumption is reported. Even though calculation
times, for the junction described, are in between 1000 and 10,000 s, this approach is integrated into the capacity evaluation
tool RECIFE at Sociéte Nationale des Chemins de fers Français (SNCF).

2.2. Tactical level TPP

De Luca Cardillo (1998) used a graph coloring formulation and an efficient heuristic they call Conflict-Direct Backtracking,
to quickly solve the feasibility problem at the tactical level. Between two endpoints, only a single route variant is considered.
Additionally, a list of incompatible routes is used. They solve 5 out of the 6 real stations considered, in less than a second, one
in 115 s.

Billionnet (2003) uses integer programming to first solve the same problem as De Luca Cardillo (1998), but also considers
various goal functions, like maximum use of some platforms. He uses 20 randomly generated station infrastructure graphs
and train sets. Solving times on these instances are from below one second to 80 s and one case had no solution in 1200 s.
These are further reduced by an alternative model formulation and the addition of clique cuts. For the one reported real
station of Abatone, with 5 platforms and 41 trains to platform, he obtains a very low solver time of 0.01 up to 0.03 s.
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Caprara (2010) and Caprara et al. (2011a) also treat the tactical level TPP but then for the case of multiple routes where
platform times can also vary in a discrete interval. They minimize a goal function, which is a quadratic function of among
others: deviation from preferred platforms and deviation from platform times. Other terms concerning platform choice are
related to the number of used platforms, used but not preferred platforms, never preferred, simultaneously used and dummy
platforms. There are also platforming quality related terms like the total number of time shifts used, the number of dynamic
conflicts used, the number of trains assigned to a non preference platform and the number of trains assigned to a dummy
platform. They linearize the goal function and use clique inequalities which together reduce solver times. Thanks to the dum-
my platforms, the system always returns solutions and may prefer to not platform a train in order to be able to deviate less
from the given timetable for the platformed trains. This is in contrast to for example, Zwaneveld et al. (1996) who do not
penalize the deviations from platform times.

Carey (1994a,b), Carey and Lockwood (1995) and Carey and Carville (2000, 2003) treat the intermediate case of variable
platform times with a unique route per line-platform combination. They do not intend to set up a methodology that can find
a fully optimal solution, which they claim would be too complex and require too much computation time. Instead, their ap-
proach is to mimic the methods that planners use. This means for example that their tool also plans train by train sequen-
tially, in decreasing order of importance. They capture other human planner concerns in an explicit lexicographic goal
function that contains the three cost components, in this lexicographical order of decreasing importance: adjustment or
knock-on costs, platform desirability costs and platform occupation (obstruction) costs. Even though this method does
not obtain an optimal solution, nor does it intend to, it represents current human planner practices in a more formal
way. Their results show that about 20% of the trains are allocated to a different platform than when allocated by the human
planners. They mention that this is due to the fact that ‘‘the platform preference data was elicited from discussions with indi-
vidual schedulers, and are estimates of largely unwritten, changing and somewhat discretionary rules’’. In a timetable which
was finalized by human planners, Carey and Carville (2003) mention their tools found headways smaller than the specified
minimum headways, yet still above some absolute minimum headway. Carey and Carvilles tools also, safely, never reduce the
headway time below the absolute minimum headway. They mention their results are obtained quickly. Carey and Crawford
(2005) spatially extend this work with the consideration of whole corridors of stations in the combined problem of scheduling
and platforming.

Ghoseiri et al. (2004) use a multi-objective goal function composed of the passenger satisfaction criterion of lowering tra-
vel time, which they call effectiveness and the railway company interest of reducing fuel consumption, which they call
efficiency.

2.3. Operational level TPP

Because of the real time requirements and the higher level of detail at this level, computationally, the TPP at the opera-
tional level is the most demanding one. Chakroborty and Vikram (2008) treat this case, using a MILP model with a goal func-
tion that minimizes, weighted by train priorities, the summed inconvenience caused by (1) delay of trains waiting for a
platform, (2) allocation of non-preferred platforms and (3) last minute reassignment of platforms. The largest problems
solved optimally within 10 min is one with 110 trains and 9 platforms on a time horizon of 2 h and where arrival times
of trains are known at about an hour in advance.

Lusby et al. (2011a, 2013) also discuss the TPP research at the operational level. They argue that for this level, constraints
based on (pairs of) paths as sequences of separate sections, which they call resources, are better replaced by constraints based
on separate resources themselves. They report solution times in terms of iterations, but no absolute times in seconds are given.

Miao et al. (2012) consider a form of stability as main optimization criterium for their TPP. When the platform arrival or/
and departure times of the given timetable cannot result in a feasible platform, they succeed in finding a feasible platform
with minimal change to these platform times. They both minimize the changes the TPP requires for the timetable as well as
the chance on platform conflicts in real time. The technique they use is ant colony optimization.

2.4. Summary

We summarize the characteristics from the TPP related literature in Table A.1 and their applications and obtained results
in Table A.2 in Appendix A. Table cells without a value occur when we could not find any mention of the corresponding char-
acteristic in the specific publication nor from correspondence with the authors. We also already contrast our own research
with the state-of-the-art by including our work in this table. In this paper, we focus on the strategic and tactical level. The
next section will describe our work in more detail and compare it to the previous work we described.

Further, more elaborate studies considering the TPP are the PhD dissertations of Burkolter (2005), Herrmann (2006),
Lusby (2008), Galli (2009) and Caimi (2009) and the Masters thesis of Fuchsberger (2007).

3. Our TPP version

From the previous section, it is clear that there are many variants of the TPP problem. In this section, we describe the
variant we consider and the assumptions we make. In Section 4, we will derive our mathematical model for it.
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3.1. TPP level: strategic and tactical

The train platforming problems Infrabel wants to solve are initially at the strategic level, where changed or/and increased
train traffic raises the question whether all affected stations have sufficient capacity to absorb this new traffic. Because this is
a phase where many timetables are explored, Infrabel needs a quick and optimal platforming solution and ideally a fully
automated one. Also, during actual timetabling, a verification of the existing platforming and routing solution, as well as
an automatic improvement of it is needed. We cover both types of uses described here, strategic and tactical, in our model
developed below.

3.2. Fixed platform times, variable junction times

For capacity studies of a junction (station area, including platforms and a grid on each side) at the strategical level, it is
fine to assume that platform entry and exit times are fixed and junction entry and exit times can always be derived by sub-
tracting respectively adding route durations of the chosen route. Indeed, in capacity studies of just one junction, junction
entry and exit times should not be subject to any line or previous nor next station constraints.

In contrast, for the tactical level, the timetable also imposes constraints on neighboring junctions and as such also on
junction in and out times of the junction considered. Hard constraints for platform times on the inside of the routing grids,
and hard constraints on junction times on the outer side of the routing grids, may then render the TPP infeasible. We believe
it is best to allow some variability on both, but this is only useful if one can make a sensible quantitative decision about the
value of adaptations. Lacking such a valuation method for now, we assume platform times as fixed and junction in and out
times as freely adaptable.

3.3. Conflict modeling based on train-pairs including a conflict filter

Contrary to Lusby et al. (2011a, 2013) but like Zwaneveld et al. (1996), Zwaneveld (1997, 2001) and Caprara et al. (2007),
we define conflicts as existing between pairs of trains. When deciding which train pair occupations overlap, there are three
cases to consider.

� Some occupation time interval pairs are so far removed from each other in time that they will never overlap in time, inde-
pendent of the platforms and routes chosen for them. We will not need to model constraints for these pairs.
� Other interval pairs always overlap, independent of the platform and routes chosen. We will model constraints for these

pairs.
� Interval pairs of a third type can potentially overlap depending on the platform and routes chosen. This is the case because

some platforms and routings take more time to traverse than others. Platform times are fixed, but as explained in detail
later, due to platform lengths, train lengths and finite train speeds, actual platform usage intervals are extended with
some part of the total routing times, and these time intervals are thus route choice dependent. We will model constraints
for these pairs. The choice of platform and routes will be variables in these constraints. As long as the constraint contains
these variables, it forbids all potential conflicts. Such a constraint forbids the potentially wrong choice for platforms and
routings that would lead to time overlap and thus to an actual conflict. When, during solving of the model, all actual plat-
form and routing choice constants are substituted for these variables, the resulting constraints forbid all actual conflicts.

Just like for pairs of (same) route-extended platform occupations, for pairs of (dependent) route occupations, we apply a
similar strategy of setting up constraints.

3.4. Level of detail in timing and continuous instead of discretized time

To choose routings properly, it is important to consider train speed, train length and their influence on route duration in
the platforming problem. This is so, because the choice of a route for a train will influence its timing and whether the train is
in conflict with other trains on dependent routes or not. Indeed, just supposing that all routes would take an equal time is
wrong and will introduce inaccuracies in the planning, which will lead to route conflicts in practice. This simplification is
present in De Luca Cardillo (1998) and Billionnet (2003), but we now take this important consideration into account.

However, contrary to Zwaneveld et al. (1996), Zwaneveld (1997, 2001), Caprara (2010), Caprara et al. (2011a) and Lusby
et al. (2011b), but similar to De Luca Cardillo (1998) and Billionnet (2003), we assume that each section can be taken at max-
imum section speed, independent of the trains’ speed on the previous sections. We believe that there is enough slack time
margin in our timetables during which a train can decelerate on the open track before entering a station, to reduce its speed
to what is required on a station track. (Routing or platform sections often have a speed limit of 40 km per hour.) We also
believe similar margins exist on the open track after leaving a station to get up to the maximum speed there. The above
assumption also avoids the tree of discrete possibilities that Zwaneveld et al. (1996), Zwaneveld (1997, 2001), Caprara
(2010), Caprara et al. (2011a) and Lusby et al. (2011b) set up and the discretization of time that is inherent to such a tree.
Our platformer does not shift times because we and Infrabel consider time shifting to be part of the macroscopic plan. In the
macroscopic plan, enough slack on open lines before respectively after the station should be provided so that slowing down
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to, respectively speeding up from, station maximum speed restrictions is possible. The macroscopic plan should also provide
timing such that all trains can be platformed in each station. This may result in some iterations over macroscopic timetabling
and platforming.

3.5. One route variant

As for route variants, for the time being, for most stations, Infrabel could only supply us with default routes. Consequently,
we also currently assume that there is at most one route between each incoming (outgoing) line and each platform. Even so,
we maintain both a platform choice variable as well as a route choice variable. The fact that a choice of platform directly
implies the single route to/from the fixed line will be expressed by a separate connectivity-constraint. This method allows
us to expand towards multiple routes more easily later. The option of generating multiple routes for each line-platform pair
from the raw infrastructure data could also be taken. Dewilde et al. (2014) have done this for the station area of Brussels,
using a MILP based approach to generate, simultaneously, route choices and corresponding schedule times with the objective
of obtaining more robust schedules for stations. However, currently, not enough data is available to apply this to other sta-
tion areas.

3.6. Mixed integer linear programming

We choose MILP, since we like its flexibility and also appreciate its clear answer as to how far our results are away from
the optimal one. Other heuristic algorithms usually do not provide these benefits. Now that we presented what version of
TPP we want to tackle, we can also explain in more detail here what we mean by feasibility and optimality of our MILP model
and the solver methods we use.

3.6.1. Feasibility
We will try to platform the currently planned trains, but also some expected future trains. When planning too many new

trains, without any extra measures, it is possible that the TPP becomes infeasible. This would mean no solution is returned.
To avoid this, we defined, next to the real platforms and routes, a fictive platform. This was also done by Joubert in the ori-
ginal MILP model for Infrabel in 2008. We also added fictive IN and OUT routes that allow any number of occupations and
movements assigned to it. This guarantees feasibility of the model. The fictive platform will have all trains assigned to it that,
due to capacity problems or dependent route constraints, cannot be assigned to real platforms. Caprara et al. (2007) already
described and used this same concept as the dummy platform. They define an infinite amount of them, but we need just one,
since we allow occupations on the fictive platform to overlap. Any of our fictive routes too can hold any number of move-
ments overlapping in time. Also, no potential conflicts can arise between a fictive route and a real one, let alone between two
fictive ones. The result is that our model is always feasible.

3.6.2. Optimality
As mentioned, we define a current train set and a supplementary one. The second set, on the tactical level, could represent

the actual future set of trains or, on the strategic level, could be incrementally enlarged with the aim to determine practical
station capacity. Zwaneveld et al. (1996), Zwaneveld (1997, 2001) and Kroon et al. (1997) also used this approach. Our goal
function, both for the initial and for the supplementary traffic, consists of two types of cost terms. The first corresponds to a
penalty for changing an occupation from a real to another real platform. The second type represents a, usually higher, penalty
for moving an occupation from a real to the fictive platform. The total cost function is the sum of these penalties over all
occupations and will be minimized. The fictive platform can only be used at a higher penalty. As such, the solver will try
to keep trains on their current platform. If this is not possible, it will move a train to another real platform. If even that is
not possible, it will have to move the train to the fictive platform.

If keeping the already planned trains on the current platforms is no longer a goal, the cost terms of the first type can be
removed and then more platforming options become attractive. This will be especially beneficial if the original planning was
not yet done with future traffic in mind, which is often the case. Compared to Caprara et al. (2011a), we use a simpler and
directly linear goal function. In fact, we forbid all conflicts using hard constraints, while Caprara et al. (2011a) allow small
conflicts up to some threshold, penalize them in their goal function and forbid larger conflicts with hard constraints. In order
to penalize the number of minutes of conflicts, one needs a quadratic term. This is why Caprara et al. (2011a) use a quadratic
objective function. Clearly, if in Caprara et al. (2011a) the threshold is set to zero, then everything is directly linear. Also, we
do not model some other concerns present in Caprara et al. (2011a) like time shifts and minimization of the number of trains
simultaneously present, because our company considers these to be a secondary concern.

3.6.3. Solver algorithms
We use Mixed Integer Linear Programming and used the three solvers CPLEX, Gurobi and XPRESS with their default set-

tings and solver algorithms. These are branch-and-cut or branch-and bound for MILP and simplex or dual simplex for LP
problems. Since we obtain low computation times, we do not need nor use techniques like clique cuts or column generation.
However, it must be mentioned that only considering one route variant per in- or out-line and platform combination, as we
do, reduces the complexity of the model and the necessary solving time.
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4. TPP MILP model

In this section, we derive our train routing and platform allocation model in detail. Essentially, we map train traffic on the
infrastructure, so we define these terms first. We subsequently define constant time points, constant sets and mappings,
variables, constraints and the goal function of our model.

4.1. A note on Booleans and MILP

We will derive an integer mixed linear programming model for our TPP version. However, in our model formulation, we
allow the introduction of boolean variables and boolean expressions and equations using the logical operators: OR (_), AND
(^), implication ()), equivalence (�) and negation (:). We also use the operators equality (¼) and non-equality (–) that map
two integers to a boolean. All these logical expressions can be converted to regular MILP constraints on 0,1-integers as, for
example, described in Williams (1994). An http://code.google.com/p/milp-logic/open sourced software layer (Sels, 2012) we
wrote does this automatically for all these logical expressions. The derived model then becomes a regular MILP and can di-
rectly be solved by any MILP solver. We used CPLEX, Gurobi and XPRESS here. Allowing these logical expressions in our mod-
el description makes it more compact as well as easier to understand.

4.2. Infrastructure definition

A station consists of a set of parallel platforms, with a routing grid on one or two sides. The goal of these route grids is to
be able to connect (almost) any platform to any line going to or coming from other stations. This grid allows more flexibility
in assigning trains to platforms, which increases practical station capacity.

4.3. Traffic definition

A train entering or leaving a station through any route and a platform is called a movement. Each movement happens on a
particular IN- or OUT-route. An occupation is a collection of (n IN þm OUT) movements that describe arrival and respectively
departure times of the same physical train units and consequently to/from the same platform. Each movement can occur on
a different route, but all the movements within one occupation will pass or stop at the same platform. By these definitions,
each train movement has to be mapped on a route whereas each train occupation has to be mapped on a platform. By defining
occupations to have an unrestricted number of IN and OUT movements, we effectively allow any train merge and split pat-
tern. A platform is occupied from the beginning of the earliest IN movement of the occupation up to the end of the latest OUT
movement in the occupation. Grouping the movements in occupations allows us, per occupation, to enforce the allocation of
all its movements to the same platform, real or fictive. Also, movements of different occupations cannot be interleaved in
time on the same platform. For these two reasons, the concept of occupation is essential.

4.4. Resource occupation time point definitions

We follow the train in Fig. 1 in increasing time and space dimensions, as it goes from the IN route over the platform to the
OUT route. The top half of this figure shows two curved lines. The bottom curve describes the position and time of the head of
the train, evolving along the vertical space axis and horizontal time axis. The top curve shows the position and time of the tail
of the train. The vertical distance between those curves, along the space axis, represents the length of the train which is of
course constant. The curved parts represent the deceleration and acceleration before and after the dwell time at a stations
platform for a stopping train. The theory that follows will also be applicable to passing trains though. The bottom half of
Fig. 1 is the vertical projection of its top half. This leaves the time dimension only for the different resources, being the
IN route, the platform and the OUT route here. By performing this projection we get time intervals for each resource.

There is a time overlap between each pair of subsequent resources the train travels through. This is due to the head of the
train being on the next resource, while the tail of the train is still on the current resource.

If we analyze an IN movement, there are different time points to consider, as well as durations between them.
Note that the indices o,m,p,r respectively stand for occupation, movement, platform and routing indices.

� The time trhio;m;r is the time when the routing has the head of the train at its beginning (in side), which is also the end of
the IN line.
� The time trhoo;p;m;r is the time when the routing has the head of the train at its very end (out side). This coincides with the

in side of the platform, so it is equal to tphio;p;m.
� The difference between the above times is the route to platform duration drsr when we have a stop train and drpr for a

pass train. So trhoo;p;m;r ¼ trhio;m;r þ drsr and trhoo;p;m;r ¼ trhio;m;r þ drpr respectively. Note that these durations are supposed
to be solely dependent on the route r and not on the train type. This is the case because we consider a conservatively high
value for the slowest train, such that any train can satisfy these requirements.

60 P. Sels et al. / Transportation Research Part B 61 (2014) 55–72

180 PLATFORMING AND ROUTING IN STATIONS

http://code.google.com/p/milp-logic/


� The time tparro;m is the time when the middle of the train arrives at the middle of the platform. This is the given platform
arrival time as specified in the planning.
� We define another time difference as dparrhip where tphio;p;m ¼ tparrro;m � dparrhip. Note that this value is dependent on

the platform, more specifically on its length. It is also dependent on the speed of the train but again we take a conservative
value for a slow train here.

Symmetrically for an OUT movement we define the following.

� The time tpdepo;m is the time where the middle of the train is still at the middle of the platform but the train is departing
now.
� At the time tphoo;m;r the platform has the head of the train at its out side. This time also equals the time trhio;m;r where the

OUT routing has the head of the train at its in side.
� The duration between the above two time points is dphodepp where tpdepo;m ¼ tphoo;m;r � dphodepp. As for the IN move-

ment, this duration is considered to be only platform and not train dependent.
� The time trhoo;p;m;r is the time where the OUT routing has the head of the train at its out side, which is also the starting

point of the OUT line.
� The difference between the two above time points is the duration drr ¼ trhoo;p;m;r � tphoo;p;m. This solely depends on the

route, since the train is considered the slowest one again.

On top of the above we have, for every resource, a duration between the leaving time of the head of the train and the
leaving time of the tail of the train. Fig. 1 shows these as:

� drtr for the duration of the routing of the train tail, which is dependent on the IN route it comes from, and
� dptp for the duration on the platform of the train tail, dependent on the OUT route it goes to. We take dptp as equal to the

drtr of the OUT route.

Fig. 1. Resource occupation time intervals and their durations.
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4.5. Basic constant sets and mappings

� Infrastructure
– L is the set of lines of both sides of a station, both in and out lines.
– P is the set of platforms of a station.
– R is the set of routes from lines towards the platforms, and from platforms to lines.
– 8p 2 P : Rp is the set of routes that are connected to platform p.
– r2p : R! P : r # p is the mapping that for each route r, gives the platform p it is connected to.
� Train activities

– O is the set of occupations to be mapped on platforms.
– M is the set of all movements, where several movements can belong to the same occupation. MIN is the set of IN move-

ments MOUT is the set of OUT movements.
– 8o 2 O : Mo is the set of movements for an occupation o.
– m2o : M ! O : m # o is the mapping that for each movement m, gives the occupation o it is belongs to.
� Range of possible infrastructure items per train activity

– Po is the set of all platforms that are reachable for each of the movements belonging to occupation o.
– Ro;m is the set of all routes that are possible for movement m of occupation o.

4.6. Further constants

4.6.1. Infrastructure properties

� 8p 2 P : dpsp is the duration a train’s head is on the platform p, when it will stop at the platform, excluding the dwell time.
� 8p 2 P : dppp is the duration a train’s head is on the platform p when it will pass the platform, dwell time ¼ 0.
� 8p 2 P : dparrhip is the duration a train’s head is on the platform p up to the time when the middle of the train is at the

middle of the platform. We take as approximation: dparrhip ¼ dpsp=2 or dparrhip ¼ dppp=2 for a stopping and passing train
respectively.
� 8p 2 P : dphodepp is the duration a train’s head is on the platform p after the time the middle of the train is at the middle

of the platform. We take as approximation: dpdephop ¼ dpsp=2 or dpdephop ¼ dppp=2 for a stopping and passing train
respectively.
� 8r 2 R : drhr as the duration of a train’s head to go through the routing r.
� 8r 2 R : drtr as the duration between a train’s head and tail to go out of the routing r.
� depr0 ;r1

indicates whether two routes r0 and r1 are dependent (1) or not (0). (Two routes are dependent if they have an
infrastructure resource (section, switch or signal) in common.)
� pFICT is the fictive platform.

4.6.2. Train activity properties and worst case time bounds
The entities defined here, are constants to the MILP model. (In some cases, similarly named variables are defined later. In

those cases, we distinguish between these by adding a suffix ‘C’ here.)

� 8o 2 O : tparro is the fixed arrival/pass time at the platform () middle of train is at middle of platform)
� 8o 2 O : tpdepo is the fixed departure/pass time at the platform () middle of train is at middle of platform)
� To avoid that two trains use the same resource at any given time, be it a route or a platform, we will later forbid that their

usage time intervals overlap each other. To allow this, we need to calculate the worst case (over all possible allocations)
Constant Low and High bounds on each time interval of movements and occupations, where each resource is potentially
(assuming any allocation possible) in use. Some renaming is done here to make formulas later more consistent. We use �
to mean defining equivalence and define:
– route movement time interval Low and High Constant times,
⁄ for IN movements:

8o 2 O : 8m 2 Mo;IN : 8p¼r2pr
r 2 Ro;m :

mtLoCo;m;r � trhio;m;r ¼ tparro;m � dparrhip � drr

mtHiCo;m;r � trtoo;m;r ¼ tparro;m � dparrhip þ drtr

(
ð1Þ

⁄ for OUT movements:

8o 2 O : 8m 2 Mo;OUT : 8p¼r2pr
r 2 Ro;m :

mtLoCo;m;r � trhio;m;r ¼ tpdepo;m þ dphodepp

mtHiCo;m;r � trtoo;m;r ¼ tpdepo;m þ dphodepp þ drr þ drtr

(
ð2Þ
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– platform occupation time interval Low Constant time for each of its IN movements:

8o 2 O : 8p 2 Po : 8m 2 Mo;IN : otLoCo;p;m � tphio;p;m ¼ tparro;m � dparrhip ð3Þ

– platform occupation time interval High Constant time for each of its OUT movements:

8o 2 O : 8p 2 Po : 8m 2 Mo;OUT : otHiCo;p;m � tptoo;p;m ¼ tpdepo;m þ dphodepp þ dptp ð4Þ

� An important difference with De Luca Cardillo (1998), Billionnet (2003), Delorme et al. (2001), is that we take into account
differences in route durations. So, depending on the route taken, the movement time intervals change. Consequently, the
time interval ½otLoCo;p;m; otHiCo;p;m�when either route or platform is occupied, changes as well. So, in our model, time inter-
val bounds are variables for the MILP model. In De Luca Cardillo (1998) and Billionnet (2003), actual overlap calculation of
each pair of constant train (route) movement time intervals can be done, even prior to the setting up of the MILP model.
We however, have to model in terms of potential overlaps. We do this, for both movements and occupations, using the
worst case, constant, lower and upper bounds defined in Eqs. (5)–(7).
– platform occupation time interval Low Lower bounds (Lb) and High Upper bounds (Ub) Constant times over all its IN

respective OUT movements:

8o 2 O : 8p 2 Po :
8m 2 Mo;IN : otLoLbCo;p 6 otLoCo;p;m

8m 2 Mo;OUT : otHiUbCo;p P otHiCo;p;m

�
ð5Þ

– Lower bounds (Lb) on Low time (Lo) and Upper bounds (Ub) on High time (Hi) of occupation platform time (ot) inter-
vals, over all platforms possible for occupation o:

8o 2 O : 8p 2 Po :
otLoLbCo 6 otLoLbCo;p

otHiUbCo P otHiUbCo;p:

�
ð6Þ

These platform choice independent bounds otLoLbCo and otHiUbCo will be used in Eq. (10).
– Lower bounds (Lb) on Low time (Lo) and Upper bounds (Ub) on High time (Ht) of movement route time (mt) intervals,

over all routes possible for movement m:

8o 2 O : 8m 2 Mo : 8r 2 Ro;m
mtLoLbCo;m 6 mtLoCo;m;r

mtHiUbCo;m P mtHiCo;m;r:

�
ð7Þ

The route choice independent bounds mtLoLbCo;m and mtHiUbCo;m will be used in Eq. (11).
� 8o 2 O : pORIGo is the original platform of the occupation o.
� dtS is the security time that separates all platform occupations pairs as well as all movement route pairs.
� CFINI the cost for assigning an initial train to the fictive platform.
� CFSUP the cost for assigning a supplementary train to the fictive platform
� CRINI the cost for assigning an initial train to a real. platform. It is set to 0 for its preferred platform.
� CRSUP the cost for assigning a supplementary train to a real platform. It is set to 0 for its preferred platform.

4.7. Decision variables

The entities defined here, are variables of the MILP model. To distinguish between possibly similarly named constants de-
fined earlier, we make this explicit with a suffix ‘V’. For every occupation o 2 O, a variable po 2 P defines the variable platform
that the occupation will be allocated to. Also, for every occupation o 2 O and for every movement m 2 Mo, a variable ro;m 2 R
defines the variable route that the movement within this occupation will be allocated to. po and ro;m are related. Indeed, once
the platform is chosen for an occupation, only routes connected to it are left as a valid choice for its movements. Also, since the
lines are specified per movement, a movement will also only allow the routes that are connected to this line. We define:

� 8o 2 O : 8p 2 P : opo;p, which is true iff platform p is chosen for occupation o,
� 8o 2 O : 8m 2 Mo : 8r 2 R : mro;m;r which is true iff routing r is assigned to movement m,
� lower and upper bound variable times on occupation platform time intervals:

8o 2 O :

otLoVo �
X
p2Po

otLoLbCo;p � opo;p

otHiVo �
X
p2Po

otHiUbCo;p � opo;p;

8>><
>>: ð8Þ

� lower and upper bound variable times on movement route time intervals:

8o 2 O : 8m 2 Mo :

mtLoVo;m �
X

r2Ro;m

mtLoCo;m;r �mro;m;r

mtHiVo;m �
X

r2Ro;m

mtHiCo;m;r �mro;m;r:

8>><
>>: ð9Þ
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� We have to impose that between two usages of the same resource, their time intervals do not overlap, so are separated.
This is the case when the upper bound of one time interval comes before the lower bound of the other. In practice we also
want to leave a certain security time buffer between each subsequent pair of trains on the same resource. This security
time dtS will typically range from 1 min to 3 min. The lexical preceding operator � is used to avoid unnecessary defini-
tions and constraints.
– Before and separated booleans for occupation platform interval pairs:

8 o0 � o1

½otLoLbCo0 ; otHiUbCo0 Þ\
½otLoLbCo1 ; otHiUbCo1 Þ–/

o0; o1 2 O :

obefo0 ;o1 � ðotHiVo0 þ dtS 6 otLoVo1 Þ
obefo1 ;o0 � ðotHiVo1 þ dtS 6 otLoVo0 Þ
osepo0 ;o1

� ðobefo0 ;o1 _ obefo1 ;o0 Þ:

8><
>: ð10Þ

In Eq. (10), based on the interval ordering bef booleans, we define separation booleans, which are used later in (17) in the
filtering (ðo0 � o1Þ ^ ½otLoLbCo0 ; otHiUbCo0 Þ \ ½otLoLbCo1 ; otHiUbCo1 Þ – /) of interval pairs that can potentially overlap. This fil-
ter will significantly reduce the number of constraints. So of course, here in Eq. (10), we also only define the ordering vari-
ables osepo0 ;o1

that are needed in these constraints, by using exactly the same filter.
– Before and separated booleans for movement route interval pairs:

8 m0 � m1

½mtLoLbCm0 ;mtHiUbCm0 Þ\
½mtLoLbCm1 ;mtHiUbCm1 Þ–/ :

m0;m1 2 M :

mbefm0 ;m1 � ðmtHiVo0 þ dtS 6 mtLoVm1 Þ
mbefm1 ;m0 � ðmtHiVo1 þ dtS 6 mtLoVm0 Þ
msepm0 ;m1

� ðmbefm0 ;m1 _mbefm1 ;m0Þ;

8><
>: ð11Þ

where these msepm0 ;m1
variables and the same movement filter is also used in (18).

� Changed Platform to Fictive Boolean, true iff for an occupation, the original platform was not the fictive one but the solver
changes it to the fictive one.

8o 2 O : cfo � ððpORIGo – pFICTÞ ^ ðopo;p ¼ pFICTÞÞ: ð12Þ

� Changed To Other Real Platform Boolean: true iff for an occupation, the original platform is changed by the solver to
another real one.

8o 2 O : cro � ðopo;p – pORIGoÞ ð13Þ

4.8. Constraints

� For each occupation, exactly one platform has to be chosen:

8o 2 O :
X
p2P

opo;p ¼ 1 ð14Þ

� For each movement, exactly one route has to be chosen:

8o 2 O : 8m 2 Mo :
X
r2R

mro;m;r ¼ 1 ð15Þ

� Platform-route connectivity implies a relation between the assignment of routes to movements and platforms to occupa-
tions. More specifically, if a route r is assigned to a movement m of occupation o (if mro;m;r ¼ true), then the unique plat-
form r2pr the route r is connected to, and the occupation m2om the movement m belongs to, should also be assigned to
each other (then opm2om ;r2pr

¼ true):

8o 2 O : 8m 2 Mo : mro;m;r ) opm2om ;r2pr
ð16Þ

The interval bounds resulting from the definitions (6) and (7) are now used as a filter which allows us to only have to
impose the reduced set of the separation enforcing Eqs. (17) and (18) below.

� A platform cannot be used by two trains at the same time. So, for each pair of different occupations which are potentially
overlapping in time (domain: ½otLoLbCo0 ; otHiUbCo0 Þ \ ½otLoLbCo1 ; otHiUbCo1 Þ– /), if they are assigned to the same platform
resource (p0 ¼ p1), then we enforce separation of their platform usage time intervals

8 o0 � o1

½otLoLbCo0 ; otHiUbCo0 Þ\
½otLoLbCo1 ; otHiUbCo1 Þ–/ :

o0; o1 2 O : 8p0¼p1
ðp0;p1Þ 2 ðPo0 ; Po1 Þ : opo0 ;p0

^ opo1 ;p1
) osepo0 ;o1

: ð17Þ

Note that, if two different platforms are chosen for o0; o1, no time separation is enforced between them.
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� Two dependent routes cannot be used by two trains at the same time. So, for each pair of different movements which are
potentially overlapping in time (domain: mtLoLbCm0 ;mtHiUbCm0 Þ \ ½mtLoLbCm1 ;mtHiUbCm1 Þ – /), if they are assigned to
dependent route resources (depr0 ;r1

), then we enforce separation of their route usage time intervals

8 m0 � m1

½mtLoLbCm0 ;mtHiUbCm0Þ\
½mtLoLbCm1 ;mtHiUbCm1 Þ–/ :

m0;m1 2 M : 8depr0 ;r1
ðr0; r1Þ 2 ðRm0 ;Rm1 Þ : mro0 ;m0 ;r0 ^mro1 ;m1 ;r1 ) msepm0 ;m1

: ð18Þ

Note that, if two independent routes are chosen for m0;m1, no time separation is enforced between them. Also, movements
of each pair can belong to the same or to different occupations.

4.9. Goal Function

� Minimize penalties of moving assignments from real to fictive platform and of moving assignment from preferred (real)
to non-preferred (real) platforms, for both initial and for supplementary train sets, possibly with different weights:

gðopo;pÞ ¼
X

o2OINI

CFINI � cfo þ CRINI � cro þ
X

o2OSUP

CFSUP � cfo þ CRSUP � cro: ð19Þ

For conservative optimization, where we have a preference for current platforms and also for current trains over future trains
to be platformed, one can use (CFINI;CFSUP;CRINI;CRSUPÞ ¼ ð8;4;2;1Þ. Actual capacity evaluating users at Infrabel also used
ð100;50;10;1Þ. For progressive optimization one can use ð1;1;0;0Þ instead. Here, there are no preferential platforms and
both current and future traffic are equally preferred to be platformed.

Table 1
Platforming current train occupations only (rows starting with ‘C:’) as well as both, current and future train occupations (rows starting with ‘CF:’), each
contrasting Conservative (‘C’ columns) and Progressive Scenario (‘P’ columns). Conservative: ðCFINI ; CFSUP ;CRINI ;CRSUPÞ ¼ ð8;4;2;1Þ. Progressive:
ðCFINI ; CFSUP ;CRINI ;CRSUPÞ ¼ ð1;1;0;0Þ. (r) means original solution. (p) means optimal solution. r ! p means the transition from original to optimized solution.
Countings of occupations (Occup.) and movements (Mov.) for an original ‘solution’ which is infeasible are marked with a⁄.

Station row Bergen Brugge Denderleeuw Gent Leuven

Conservative or progressive C P C P C P C P C P

# Original Platformed Occup. (r), 1a 19⁄ – 19⁄ – 22 – 35⁄ – 36⁄ –
C: # Optimized Platformed Occup. (p) 1b 18 18 19 19 22 22 32 32 30 31
C: Platformed Occup. % Inc. ðr ! pÞ 1c �5 �5 0 0 0 0 �9 �9 �17 �14
CF: # Optimized Platformed Occup. (p) 1d 39 41 43 47 37 42 36 37 56 56
CF: Platformed Occup. % Inc. ðr ! pÞ 1e 105 116 126 147 68 91 3 6 56 56
# Max. Reachable Platformed Occup. 1f 168 – 240 – 216 – 288 – 336 –
# Original Routed Mov. (r) 2a 33⁄ – 34⁄ – 39 – 64⁄ – 65⁄ –
C: # Optimized Routed Mov. (p) 2b 31 31 34 34 39 39 57 56 51 55
C: Routed Mov. % Inc. ðr ! pÞ 3c �6 �6 0 0 0 0 �11 �12 �22 �15
CF: # Optimized Routed Mov. (p) 2d 65 68 82 88 67 77 64 66 101 102
CF: Routed Mov. % Inc. ðr ! pÞ 2e 97 112 141 159 72 97 0 3 55 57
Original Platform In Use % (r) 3a 26 – 23 – 14 – 26 – 31 –
C: Optimized Platform In Use % (p) 3b 24 24 21 21 14 14 20 21 21 23
C: Platform Extra % In Use ðr ! pÞ 3c �2 �2 �2 �2 0 0 �6 �5 �10 �7
CF: Optimized Platform In Use % (p) 3d 49 58 29 26 20 21 23 23 31 30
CF: Platform Extra % In Use ðr ! pÞ 3e 23 32 6 3 6 7 �3 �3 0 �1

Station row Mechelen Aarschot Lichtervelde Manage Oostende

# Original Platformed Occup. (r) 1a 32 – 6 – 10 – 1 – 8⁄ –
C: # Optimized Platformed Occup. (p) 1b 32 32 6 6 10 10 1 1 7 7
C: Platformed Occup. % Inc. ðr ! pÞ 1c 0 0 0 0 0 0 0 0 �12 �12
CF:# Optimized Platformed Occup. (p) 1d 32 32 34 34 29 30 41 41 11 11
CF: Platformed Occup. % Inc. ðr ! pÞ 1e 0 0 467 467 190 200 4000 4000 38 38
# Max. Reachable Platformed Occup. 1f 240 – 120 – 120 – 120 – 264 –
# Original Routed Mov. (r) 2a 58 – 12 – 20 – 2 – 10⁄ –
C: # Optimized Routed Mov. (p) 2b 58 58 12 12 20 20 2 2 8 8
C: Routed Mov. % Inc. ðr ! pÞ 2c 0 0 0 0 0 0 0 0 �20 �20
CF: # Optimized Routed Mov. (p) 2d 58 58 66 66 56 58 77 79 14 16
CF: Routed Mov. % Inc. ðr ! pÞ 2e 0 0 450 450 180 190 3750 3850 40 60
Original Platform In Use % (r) 3a 21 – 9 – 11 – 0.3 – 18 –
C: Optimized Platform In Use % (p) 3b 21 21 9 9 11 11 0.3 0.3 12 12
C: Platform Extra % In Use ðr ! pÞ 3c 0 0 0 0 0 0 0.0 0.0 �6 �6
CF: Optimized Platform In Use % (p) 3d 21 21 28 24 26 25 27.0 27.0 13 8
CF: Platform Extra % In Use ðr ! pÞ 3e 0 0 19 15 15 14 26.7 26.7 �5 �9
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This completes our high level model formulation. As mentioned before in Section 4.1, we automatically convert the bool-
ean expressions to 0,1-integers and linear constraints over them, so we end up with a MILP model. The constants defined in
Sections 4.4–4.6 are calculated prior to setting up the MILP model. For the ones in Section 4.6, Eqs. (1)–(7) are used to do this.
The decision variables in Section 4.7 are added to the MILP model and their definitions (8)–(13) become linear constraints in
this model, as do the constraints (14)–(18) from Section 4.8. Finally, the linear goal function (19) is added.

5. Results

For a set of 10 stations and for current as well as current plus future traffic, during peak hours between 8am and 9am, we
now present the results of our platforming tool. We do this for the conservative as well as progressive optimization scenario.
Then, we mention our solver times. Lastly, we describe its integration and the context at Infrabel, in which it is being used.

5.1. Platforming results

To measure the success rate of the platformer in a station, we count occupations and movements for both the original and
the optimized schedule. Movement counts are a better measure for the platformers’ performance in case of train splits and
merges.

As for the columns of Table 1, with our goal function weights ðCFINI;CFSUP;CRINI;CRSUPÞ set to ð8;4;2;1Þ, we consider the
conservative optimization scenario (C-column) and with the same set to ð1;1;0;0Þ, the progressive optimization scenario
(P-column).

Consider the rows in Table 1: for each station, results for occupations are given in the first 5 rows (1a–1e). A 6th row (1f)
indicates the maximum theoretically possible number of occupations corresponding with 100% occupation of all platforms.
The next 5 rows (2a–2e) indicate movement measurements and the last 5 rows (3a–3e) report a platform use percentage
which is the fraction of time that all platforms together are used. Table 1 shows numbers for capacity increase relative to
the current situation in percentages, for occupation counts (1c = (1b � 1a)/1a), movement counts (2c = (2b � 2a)/2a) and also
platform occupied time (3c = 3b � 3a). These percentages can be seen as three measures for the relative, still available
capacity.

The zeroes in all c rows (1c, 2c, 3c) in Table 1 indicate that the current traffic (C) of the current timetable can be plat-
formed for 6 of the 10 stations considered. The negative numbers in the c rows, for the progressive scenario, indicate that
for four stations, 5% up to 15% of occupations or 5% up to 20% of movements cannot be platformed. However, when we sche-
dule current and future traffic (CF), we obtain the results in the d rows. The e rows then show the relative increase in occu-
pations (1e = (1d � 1a)/1a), movements (2e = (2d � 2a)/2a) and relative platform occupied time (3e = 3d � 3a). The
consistently positive numbers in the e rows (1e, 2e), show that, when also platforming future traffic (CF) (at other various
platform times) an increase of the total number of platformed occupations, the total number of movements as well as the
platform usage percentage is still possible. Row 3e has small negative percentages for Gent, Leuven and Oostende but this
is caused by the solver choosing many occupations with shorter dwell times.

Remember that Table 1 shows the results for fixed platform times. It illustrates that for some stations the original sche-
dule is infeasible. This often also means that the number of occupations on real platforms has to be reduced to obtain a fea-
sible schedule. This is the case for the conservative scenario (Bergen: 19! 18, Gent: 35! 32, Leuven: 36! 30, Oostende:
8! 7), but also for the progressive scenario where the results are the same, except that for Leuven we can manage to plat-
form just one more occupation. However, when we also add a future train set, we see that for the conservative scenario, the
number of possible occupations increases (Bergen: 18! 39, Gent: 32! 36, Leuven: 30! 56, Oostende: 7! 11). The pro-
gressive optimization even adds 2 and 1 occupation more for Bergen and Gent respectively. This shows that the original
infeasibility is not due to the current train set exceeding the absolute capacity of the station considered. It is due to the plat-
form times fixed in the timetable. It is very likely that changing these platform times would allow to platform all trains in a
feasible way.

For the stations where all current traffic could be placed, even in the conservative scenario, we also see that more future
traffic can be additionally platformed. (Brugge: 19! 43, Denderleeuw: 22! 37, Aarschot: 6! 34. Lichtervelde: 10! 29).
Only Mechelen (32!32) seems quite saturated but this is because no future traffic was foreseen there. For Brugge, Dend-
erleeuw and Lichtervelde, the progressive optimization manages to add 4;5 and 1 occupation more than the conservative
option.

We have shown that for all the stations considered, more trains can be platformed. However, trying to platform all the
current trains, with the current timetable is possible in some stations while not in others. For the stations where this is
not possible, small manual shifts in platform times can lead to a feasible platforming solution.

5.2. Solver response times

Table 2 gives problem size and solver time data of the same test cases as reported in Table 1. We have tested the 3 com-
mercial solvers CPLEX, Gurobi and XPRESS on comparable machines and mention their individual results.
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As shown in Table 2, MILP matrices that describe the problem get quite big. With the latest solver versions, on 4 core-
machines and the given clock frequencies, any problem can be solved in progressive mode in at most 9 min. Note that
the Brugge and Gent cases are exceptions. CPLEX and Xpress do not return a result in the two hour limit for Brugge. For Gent,
CPLEX does the same while Xpress reports ‘no integer solution’. Only Gurobi solves all cases within the time limit. In fact all
large solver times are due to a number of total traffic that largely exceeds the available capacity. From Table 1, one can see
that the maximum number of occupations platformable in the progressive scenario are 47 for Brugge and 37 for Gent. In
Table 2, one finds that the requested number of current plus future occupations is 267 for Brugge and 1069 for Gent, so this
is 5:6 times and 28:9 times more than can be platformed. The number of feasible assignments to real and fictive platforms
then strongly increases and hence it is logical that finding the best one can take much more time. To reduce computation
times, it is better to gradually increase the future train set and stop adding trains as soon as, or short after not all trains
can be platformed anymore.

Restricted to the more realistic current train set platforming problems, 6 min suffices to solve any of them. Gent and Bru-
gge remain the hardest stations. For some stations, like Mechelen, Aarschot, Lichtervelde, Manage and Oostende solver times
are below 1.2 s.

We can conclude that the solver response times certainly allow our tool to be used for the tactical platforming problem,
with current traffic only. It is also well suited and still fast enough for the strategic level, where realistic capacity estimates,
based on platforming current together with sensible future train traffic options, are required.

5.3. Integration and use

Since Infrabel experienced that the manual platforming process takes considerable time and is error prone, they searched
for commercially available automated platforming solutions. None were found, so they specified and created one in-house.
Thanks to the full integration of Leopard with Infrabel databases containing infrastructure and train movements, the plat-
forming of 2 hours of traffic in a station now typically only takes some seconds. This short time means that planners are
not discouraged anymore to repeat this process during planning, at each change of the stations’ platform times in the time-
table. This should make the planners’ jobs easier and the achieved results better.

Leopard has been integrated at Infrabel, in their Ocapi tool. The Ocapi GUI allows the user to select a station, to select
current train traffic or not, and to select particular lines on which he wants to generate supplementary future train traffic.
Ocapi then calls our platformer Leopard, which solves the corresponding model quickly and returns results as the ones de-
scribed above. Ocapi then calculates more derived graphs and measures, like a capacity number. Infrabel was positively sur-
prized by the amount of traffic our platformer can quickly platform without conflicts. The integration was successful and

Table 2
Solver times for platforming current train occupations only (rows starting with ‘C:’) as well as both, current and future train occupations (rows starting
with ‘CF:’). Each contrasting Conservative (‘C’ columns) and Progressive Scenario (‘P’ columns). Conservative: ðCFINI ;CFSUP ;CRINI ;C2ORSUPÞ ¼ ð8;4;2;1Þ.
Progressive: ðCFINI ;CFSUP ; CRINI ;CRSUPÞ ¼ ð1;1;0; 0Þ. Cplex v12.4.0.0 and Gurobi v5.0.1 run on Apple iMac Intel Quad core 2.6 GHz. Fico Xpress v7.2.1 Solver run on
HP Intel Xeon Quad core 3.3 GHz. #P = number of real platforms, #R = number of routes, #O = number of occupations to be platformed. #C = number of
constraints, #V = number of variables. Three cases only generated a solution at the two hours limit and this with a gap bigger than 0%, 1: 5.80%, 2: 33.48% and 3:
2.24%. 4Reported no result in two hours limit. All other cases reached a gap of 0%. When a solver is the fastest one to solve a problem instance, its solver time is
marked in bold.

Station Bergen Brugge Denderleeuw Gent Leuven

Conservative or progressive C P C P C P C P C P

C: #P #R #O 7, 128, 58 10, 196, 87 9, 206, 91 12, 224, 563 14, 324, 160
C: #C � #V 7 k, 5 k 18 k, 9 k 13 k, 8 k 227 k, 107 k 46 k, 24 k
C: Solver Time Cplex (s) 0.4 0.4 1.6 1.4 0.9 0.9 41.8 950.8 3.7 8.9
C: Solver Time Gurobi (s) 0.2 0.2 0.8 0.6 0.4 0.4 57.7 55.4 2.2 3.0
C: Solver Time Xpress (s) 0.3 0.2 0.6 0.5 0.5 0.5 27.6 7199.81 2.2 5.0
CF: #P #R #O 7, 128, 178 10, 196, 267 9, 206, 211 12, 224, 1069 14, 324, 256
CF: #C � #V 96 k, 54 k 248 k, 96 k 140 k, 58 k 482 k, 231 k 101 k, 56 k
CF: Solver Time Cplex (s) 138.1 847.4 337.0 7200.71 27.7 78.2 182.2 7204.82 36.2 183.6
CF: Solver Time Gurobi (s) 78.3 502.4 613.2 2853.1 27.5 37.5 442.8 227.4 49.7 218.2
CF: Solver Time Xpress (s) 138.3 1224.4 7199.6 7201.43 20.5 33.7 n.a.4 n.a.4 28.8 115.1

Station Mechelen Aarschot Lichtervelde Manage Oostende

C: #P #R #O 10, 170, 121 5, 48, 25 5, 94, 55 5, 66, 26 11, 78, 15
C: #C � #V 9 k, 7 k 1 k, 0.9 k 3 k, 2 k 1.0 k, 0.8 k 3 k, 2 k
C: Solver Time Cplex (s) 0.6 0.5 0.2 0.0 0.5 0.1 0.6 0.0 0.2 0.1
C: Solver Time Gurobi (s) 0.3 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1
C: Solver Time Xpress (s) 0.3 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2
CF: #P #R #O 10, 170, 121 5, 48, 55 5, 94, 115 5, 66, 86 11, 78, 45
CF: #C � #V 9 k, 7 k 3 k, 4 k 14 k, 9 k 4 k, 6 k 21 k, 9 k
CF: Solver Time Cplex (s) 0.5 0.5 0.4 0.4 7.2 5.8 1.5 1.8 2.0 2.1
CF: Solver Time Gurobi (s) 0.3 0.2 0.2 0.2 1.2 1.2 2.3 2.2 0.8 0.8
CF: Solver Time Xpress (s) 0.4 0.4 0.4 0.7 1.5 1.9 0.5 1.2 1.1 1.0
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helps Infrabel to better and more quickly analyze the possibility of platforming current as well as extra future traffic and it also
generates an optimal platform schedule which can be used in practice.

6. Conclusions

In this paper we define in detail a train platforming problem on the tactical and strategic level for the Belgian infrastruc-
ture manager Infrabel. A MILP model is developed and used to optimize the platforming problem for ten different stations.
Based on these calculations the capacity of the different stations in practice can be evaluated. Both the current set of trains as
well as a future set of trains, with fixed arrival and departure times, are considered. It handles normal train passes and stops,
as well as train splits and merges from any n incoming to m outgoing trains. For each train, a preferred platform can be set, if
so desired. For a realistic input problem, being the morning peak hours in a realistic station with current train traffic, the
solver response time is less than 2:2 seconds with the fastest MILP solver. A large station with a whole day of traffic can re-
quire about 30 s to platform. This is fine for a tactical level planning tool. When evaluating timetable scenarios on the stra-
tegic level, including supplementary future traffic, calculation times rise but stay below 9 min for realistic scenarios. This is
acceptable for capacity estimation studies at the strategic level. For the given future train sets for Brugge and Gent the solver
times are much higher, but we consider these sets as highly unrealistic since they multiply the current traffic by 6 and 29
respectively.

For the stations considered, we were able to check and correct platforming assignments. We can also estimate the prac-
tical capacity of a station by adding a large future train set and see the amount of trains that can still be platformed. We
proved that the stations Gent and Mechelen are quite saturated and that for the 8 other stations, there is still extra capacity
available. The practical value of the developed methodology and tool is clear from the presented tests on real stations with
real traffic. Our tool is also integrated at Infrabel and used for quickly evaluating future traffic scenarios and station capacity
consumption.

As for the scientific value of this paper, the main improvements are that the use of MILP for TPP, introduced first by
Billionnet (2003), is now extended with accounting for different route durations calculated from maximum route speeds
and train lengths. This results in a time schedule which, apart from giving usage time intervals for platforms, also returns
exact usage time intervals for default routes. Even with this extra complexity, which is reflected by a much bigger number
of constraints and variables, solver times stay low. We find the optimal solution, with the goal function specified by the rail-
way company. Moreover, since route parameters and their dependencies are already explicitly present in our model, we be-
lieve that our model is easier to extend with multiple route variants than Billionnet’s model. Currently, no complex clique
cuts are required to obtain acceptable solver times. We note that our relatively low solver times are partly caused by only
considering one route variant for each combination of in- or out-line and platform track.

Compared to De Luca Cardillo and Mione, we reach similar low solver times but, contrary to them, also can guarantee
optimality. Also, we see our use of MILP as more straightforward, flexible and extendable. The addition of the concept of fic-
tive platform and fictive routes, together with the addition of the concept of supplementary traffic, and the possibility of
treating existing and supplementary traffic differently in the goal function, allows to platform future scenarios and make
studies about good use of the remaining capacity.

7. Possible extensions

We envision some possible extension to our work. Firstly, to more closely approximate reality, we also want to model
multiple route variants per line-platform combination. Ignoring this currently slightly underestimates real capacity.

Secondly, in the tactical context of planning timetables and solving the introduced platform problems, we want to allow
the platform times and junction times to vary within certain limits, which increases the chance on a feasible solution. Of
course, this would complicate the TPPs, but a timetable that guarantees that all its planned trains can also be platformed
is a better one than a timetable that does not.

Thirdly, currently, our model only allows one train on a route at a time. Even though this is safe, in a real station, liberation
points exist, which allow a second train to pass onto the same route, as soon as the first train has passed a liberation point.
Modelling this too would improve the maximum capacity of the model and get it closer to reality. However, in practice,
Infrabel considers liberation points as a method to be used in real time to solve cases of unexpected peaks in traffic, but they
do not want the planning already to rely on it. This means that at Infrabel, this feature should only be used at the operational
level. Zwaneveld et al. (1996), Zwaneveld (1997, 2001) and Kroon et al. (1997) already model the position and use of these
liberation points, also at the strategic level.

Finally, our platforming tool is usable in other contexts than just capacity estimation. Indeed, for example, merely chang-
ing the goal function could result in a system also trying to lower transfer passenger average walking time or/and distance.
This would indeed benefit passengers more than just trying to platform as many trains as possible, independently of the
number of passengers present on them. This seems an interesting goal, given our previous timetabling research (Vans-
teenwegen and Van Oudheusden, 2006, 2007; Sels et al., 2011, 2013) that already optimizes a timetable for minimal ex-
pected passenger time. Our timetabling tool could propagate down the passenger numbers on transfers to our platformer
tool, where they could then be used as weights in its goal function. We believe that the choice of platform – as well as of
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arrival, departure and its resulting dwell and transfer times – should ideally be steered by minimizing expected passenger
time that is clearly a function of these choices. This should give a better result for passengers than artificial platform pref-
erences which, as Carey and Carville (2003) mention, are also even difficult to obtain.
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Appendix A. Comparison of features in TPP literature

See Tables A.1 and A.2.

Appendix B. Optimization improvement demonstration by visual verifications

The model developed in this paper describes how we optimize platform and route assignments. However, when trying to
convince planners of our improved platforming and routing solution, we have to show both, that there are problems present
in the current solution and that no such problems are present in the optimized solution. Typically, the best way to illustrate
this to planners is to use a graphical presentation. So, for the first task, we use a picture as in Fig. B.1. It shows the current
planning, here for Brugge station. Platforms are arranged from I to X along the vertical axis and the horizontal axis represents
time. Small brown rectangles show trains entering the station and their IN-route durations. Blue rectangles show trains

Table A.1
TPP Literature Publications: method and characteristics. When column ‘different route variants’ contains a ‘Y’, it means that multiple routes between an in or
our line and a platform are considered. A ‘N’ means that only one route is considered (when it exists). When column ‘platf. times var.’ shows ‘Y’, it means
platform times are variable rather than fixed. The ‘cont. time model’ column has a ‘Y’ when time variables are modeled as continuous variables rather than
modeled having a certain discrete resolution and coarseness. dr = durations of routes, which are calculated from v r;max = maximum speed on routes and lt =
length of trains, SPP = Set Partitioning Problem, NPP = Node Packing Problem, S = Strategic level, T = Tactical level, O = Operational level.

Publication Level Approach Technique Different route
variants

Platf. times
var.

Cont. time
model

Different

dr vr;max lt

Zwaneveld et al. (1996) S Time &
platform

MILP Y Y N Y Y Y

Zwaneveld (1997) Choice graph,
NPP

De Luca Cardillo (1998) T Conflict graph Backtrack N N Y
SPP heuristic

Delorme et al. (2001) S Constraint Constraint N N Y
Programming Propagation

Billionnet (2003) T Conflict graph MILP N N Y
SPP

Carey (1994a) S, T Human planner N Y N Y Y N
Inspired MILP
B& B heur.

Carey and Carville
(2000)

S, T Human planner Greedy N Y N Y Y N

Carey and Carville
(2003)

Inspired
heuristic

Heuristic

Carey and Crawford
(2005)

Human planner Greedy N Y N Y Y N

Inspired
heuristic

Heuristic

Caprara et al. (2007) T Time &
Platform

Branch& Y Y

Caprara et al. (2011a) Choice graph,
NPP

Price&cut

Lusby et al. (2011b) S, O Section based SPP Y Y N Y Y Y
SPP

Sels et al. S, T Conflict graph MILP N N Y Y Y Y
SPP Branch &

cut
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leaving the station and their OUT-route durations. Between them, the yellow rectangles show the platform occupations and
their durations. No overlap between rectangles should exist on any platform. Currently, at Infrabel, a similar figure is made
with paper and pencil and double use of a platform can be visually checked already. However, new checks in Fig. B.1, are the
green, orange and red lines. Leopard draws these lines automatically between each couple of trains of which the second
reuses the same or a dependent route within a time d less than 5 min. So each such line marks a potential problem which
can become an actual problem if the first train gets delayed with a time d. If d is negative or 0, even without delay, we already
have two trains on the same route at the same time. Fig. B.1 shows 4 such cases (d ¼ �0:6;�0:5;�0:2;�0:01) in red. Two
cases with 0 < d 	 1 occur (d ¼ þ0:2;þ1:0) in dark orange. Light orange means 1 < d 	 2 which is considered acceptable.

Table A.2
TPP Literature Publications: results, performance and use. projected = the future additional traffic being platformed in addition to the current one. Sels’ results
for T = Tactical correspond with Current Traffic with Conservative Approach while results for S = Strategic correspond with Current and Future Traffic with
Progressive Approach. P.G. = Pierrefitte-Gonesse junction north of Paris.

Publication Stations tested Traffic tested Optimal solution Solver times Integrated

Avg(s) Max(s) Company In tool(s)

Zwaneveld et al. (1996) 1 Real 20 Real Y S:50 S:400 ProRail STATIONS
Zwaneveld (1997) Zwolle NL

De Luca Cardillo (1998) 1 Real, Italian 6 Real N T:0.49 T:115
Delorme et al. (2001) 1 Real, P.G. 4 Projected Y S: P1000 S:10 k SNCF RECIFE

FR

Billionnet (2003) 20 Generated 20 Generated Y T:37.5 T:702
1 Real, Abatone 2 Real T:0.01 T:0.03

Carey (1994a) 1 Real, Leeds 1 Real N N N
Carey (1994b)

Carey and Carville (2000) 1 Real 1 Real N N N
Carey and Carville (2003) Leeds

Carey and Crawford (2005) 1, Adapted 1, Adapted N N N
From real, From real,
Leeds Leeds

Caprara et al. (2007) 4 Real, 4 Real Y T:143 T:8935 RFI, IT
Caprara et al. (2011a) Italian

Lusby et al. (2011b) 1 Real, P.G. 20 Generated Y
Sels et al. 10 Real 10 Real Y T: 3.15 T:27.6 Infrabel Ocapi

Belgian + 10 Projected S: 374 S: 2853 BE Leopard

Fig. B.1. Brugge station platform occupations. Original schedule. All occupations are assigned to real platforms, but 4 cases of simultaneous dependent-
route use (red lines) and 2 cases of dependent-route reuse within 1 min (dark orange lines) occur. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Green means 2 < d 	 5 which is seen as robust enough.To show planners that the optimized solution has no such d 	 1
problems, we show a picture like Fig. B.2. Dependent-route reuse lines now only have positive values for d. Here, the only
ones below 2 min are d ¼ 1:8;1:8;1:9;1:9. However, one occupation ends up on the fictive platform due to route conflicts
with other occupations for any assignment to a real platform.

In case an occupation is assigned to the fictive platform, dashed red lines indicate route occupations that occur at over-
lapping times. At least one of these represents an actual conflict if the occupation would be assigned to a real platform. In
order to be able to assign this occupation to a real platform, for now, one has to manually adapt some platform times and run
Leopard again. We shifted the platform time of one train with þ1:5 minutes and of another with �1 minute. The result is
shown in Fig. B.3. This solution assigns all trains to real platforms, so is conflictless, but is also robust (dmin ¼ 1:7) and hence
a better platforming solution than the solution in Fig. B.1.

Fig. B.2. Brugge station platform occupations. Progressively optimized schedule. No cases of simultaneous dependent-route use nor of dependent-route
reuse within 1 min occur. However, one occupation cannot be put on a real platform and ends up on the fictive platform.

Fig. B.3. Brugge station platform occupations with manually, only 2 slightly adapted platform times. Progressively optimized schedule. All occupations are
assigned to real platforms and the fastest dependent-route reuse occurs with dmin ¼ 1:7 min, which is acceptable.
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We have shown, here for Brugge, with Fig. B.1, that conflicts exist in the current schedule, with Fig. B.2, that one must
change platform times or not all trains can be platformed and with Fig. B.3, that a conflictless and robust solution is found
that platforms all trains when one cleverly and slightly changes a few platform times. Of course these station platform time
changes must also take into account timetable constraints on the macroscopic level.
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3.2 Automated Platforming & Routing of Trains in
All Belgian Railway Stations

Full Paper submitted to Journal: Expert Systems With Applications, 2015

We use the tool Leopard as described in the previous section 3.1 and apply
it to all Belgian stations. All stations pass and are resolved in 0.25 seconds
on average. In total, the same amount of train occupations is platformed and
routed as found in the platforming solutions performed by human planners and
retrieved from the Infrabel databases. Leopard also automatically produces a
spreadsheet of platforming solution indicators per station, like number of trains
platformed, number of conflicts and a robustness value. For easy comparison, it
juxtaposes these numbers on one line per station, both for the original and, next
to it, for the optimised platform plan. Totals over all selected stations are also
produced so that also the total performance of the automated platforming can
be judged. Even though the robustness of the platforming plan is not part of
the objective function, averaged over all stations, the robustness of the Leopard
generated solutions is significantly better than the human made solutions.

This shows that Leopard can be used for both checking existing platforming
plans and automatically generating new platforming plans for each station in
Belgium. As such, it can also be used as a fast, automatic more microscopic
feasibility check of an existing or changed macroscopic timetable. We believe
that deploying and using Leopard would save Infrabel a lot of time and human
error. Also, since only platforming plans without conflicts are generated, fewer
delays would be occurring in stations. This would then also benefit train
passengers.

http://www.4c4u.com/ESWA2015_LY.pdf


Automated Platforming & Routing of Trains
in All Belgian Railway Stations

P. Selsa,b,c,∗, D. Cattryssea,1, P. Vansteenwegena,2

aKU Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium
bLogically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium

cInfrabel, Department of Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

Abstract

Automatically generating train to platform assignments has been an active research area for some time, but systems
implementing this research are still not readily available to practitioners. However, now, our train platforming and
routing model has been implemented as the tool Leopard inside Infrabel, the Belgian railway infrastructure manager.

In practice, initial macroscopic timetables are often not yet feasible inside stations on the microscopic level. This
means that a platforming tool must be able to handle cases where not all trains can be platformed or routed. Our
model provides a platforming and routing plan for as many trains as possible and puts the remaining trains on a
fictive platform. Contrary to the manually made platforming plans, the optimised platforming plans have no platform
conflicts nor routing conflicts. Our model assigns as much trains as possible, given the timetable and the available
infrastructure. Our tool can solve the platforming problems for all 530 stations in Belgium together in about 10
minutes. This means (i) it saves many man months of planning time compared to the still common manual practice to
platforming and (ii) it achieves higher quality results leading to significantly less in-station train delays in practice.

As an example, the graphical output of Leopard for a larger station is shown and discussed. We also produce
an overview of key performance indicators for all stations in Belgium. We run our model for periodical and non-
periodical platforming and also for platforming with or without penalties for deviating from an original platforming
plan.

Platforming in practice in railway companies is often still done manually. Although in some cases simulation
software is used in order to support and evaluate this manual work, we believe our optimisation system is an important
step forward that allows generating platform plans more quickly and in a less error prone way.
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1. Introduction and State of the Art

In railway operations, planning all operations accurately and reliably is important since train passengers rely
on the timetable to plan their journeys. A sequence of four main planning stages is identified (Zwaneveld et al.,
1996; Cordeau et al., 1998; Lusby et al., 2011). Firstly, train lines with certain frequencies and stopping patterns are
decided upon. Secondly, train arrival and departure times are fixed for each train in each station and for each train,
platforms and routes are also determined. Thirdly, train material is assigned to the lines and lastly, crew rostering is
performed. This paper focusses on the platforming and routing of trains in stations. Narayanaswami and Rangaraj
(2014) mention that problems occurring in railway planning typically contain complex interdependencies between
multiple components and are operationally critical and that human resolutions of these problems are inconsistent,
scale inefficient, and potentially infeasible. These are the reasons why we look for computer assisted resolutions.

1.1. Decomposition into Timetabling and Platform Planning
The train platforming problem (TPP) is essentially a vehicle routing problem that includes timing constraints.

Vehicle routing problems are usually solved using local search, possibly augmented with techniques to escape from
local minima like meta-heuristics (Barbucha, 2012). However, the subcategory of TPP has attracted special attention
and different versions resulted in dedicated solution approaches. Quite some research papers discuss the problem of
train platforming (TPP) as the problem of trying to fit all trains on platforms and decide on routings while also allowing
to change arrival and departure times (Zwaneveld et al., 1996; Zwaneveld, 1997; Caprara et al., 2007, 2011; Carey,
1994a,b; Carey and Carville, 2000, 2003; Dewilde et al., 2013). While this solves the problem for one station, any
changed arrival or departure time for a certain train in the considered station will require changes to train times in the
previous and next station as well if not enough ride time buffer is present between these stations to absorb that change.
This means that platform models with variable train arrival and departure times cannot be solved independently from
the platforming problems of neigbouring stations. This is why the problem of solving platforming and timetabling
of corridors of stations or small networks of neighbouring stations has been addressed by, amongst others, Carey
and Crawford (2005) and Bešinović et al. (2015). These publications present examples of solutions for corridors of
stations or small research networks of stations but do not report studies nor results for entire countries. We built an
expert system to assist Infrabel in platforming all 530 stations of Belgium.

1.2. Improving the Platforming Approach
We believe our approach of platforming optimisation is an improvement to the current practice in railway planning,

where we think platforming does not get the right amount of attention. We explain this by contrasting the current
approaches to plaforming in section 1.2.1 and our approach in section 1.2.2.

1.2.1. The Conflict Detection and Train Delay Simulation Approach
To the best of our knowledge, no commercially available tool exists for the automatic generation of optimal

platforming solutions. Infrabel possesses the tool Artemis which can check existing platforming solutions on the
signal and block section level. However, Artemis cannot generate a platforming solution by itself. The situation at
railway infrastructure companies in most other countries is not better. Goverde and Hansen (2013) mention that in
France and Italy in 2013, a timetable was constructed, but no platform nor routing choices were made in the planning
phase. This makes it impossible to know if two trains will be simultaneously present on the same platform or on the
same or crossing routes until this happens in practice. Most countries choose a platform track and route for every
train during the planning stage, so that they can detect conflicts as well as simulate the effect of these choices on the
total network behaviour before the plans are put in practice. RMCon’s RailSys and ViaCon’s LUKS used in Germany
and elsewhere (Rail Management Consultants GmbH (RMCon), 2016; ViaCon GmbH, 2008b) and OpenTrack used
in Switzerland and many other countries (OpenTrack Railway Technology Ltd., 2012) are microscopic simulators
that are used to evaluate a timetable - including the chosen platforms and routes in stations - with respect to total
propagated train delay. A LUKS user can indicate chosen platform tracks along with routes (ViaCon GmbH, 2008a).
However, currently, automatic platform and route plan generation is not possible with any of these simulators. Also,
the routes indicated can only depend on the line a train entering a station comes from and the line a train leaving the
station goes to. In busy traffic, other platform tracks than the default ones may have to be considered to be able to
platform all trains.
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The mentioned simulators propagate train delays through a train network model. These simulators detect platform
and routing conflicts and robustness issues that result from a given planned timetable that includes default or explicitly
chosen platform tracks and routings. The simulators can indicate these conflicts by writing out a list of conflicts. Also,
in their simulations, these conflicts and robustness issues cause train delays which are then propagated through the
train network in the calculations. As such, a simulator user can evaluate whether one timetable causes more total
propagated delay than another. This approach of conflict detection and simulation which was not preceded by a phase
of optimal platform assignment that guarantees conflict avoidance has two major drawbacks. Firstly, there is no back-
annotation from the resulting train delays to what they were caused by. So, it remains difficult to know how much
of this total delay is caused by the macroscopic timetable itself and how much is caused by any of the platform and
route choices of any of the trains in the system. As a consequence, it is sheer impossible to know how to ‘repair’
the timetable or platforming plan to avoid or reduce total train delays, should they be considered too high. Secondly,
these microscopic simulations take a lot of computer time. At Infrabel, the use of LUKS on the complete Belgian
train network is considered impractical. As a consequence, simulations are restricted to subareas of about a tenth of
the country. Obviously, these simulations could ignore some important dependencies between these subareas.

1.2.2. The Conflict Avoidance by Optimisation Approach
Practice shows that manually constructed platform plans sometimes still possess train conflicts and robustness

issues. Conflict detection tools and train delay simulation tools indicate these problems but do not tell a planner
how to fix these issues. Solving one issue can be easy, but coming up with a platform plan that solves all issues
simultaneously can be a large combinatorial problem that is hard to solve for human planners. We consider it more
efficient to directly try to construct timetables and platforming plans that are guaranteed to be conflict free. Conflict
detection and train delay propagation can and should still be performed afterwards, but the whole process will then
have to be iterated over less often. This should save a lot of time in the total timetabling and platforming process.

For this to work, macroscopic timetabling should guarantee the absence of ‘macroscopic conflicts’ and platform-
ing should avoid all platform and routing conflicts inside stations. In earlier research (Sels et al., 2016), we constructed
a method for macroscopic timetabling that produces timetables without these ‘macroscopic conflicts’, assuming head-
ways of at least 3 minutes are feasible and assuming that the number of trains on each track section does not exceed
capacity constraints. In this paper, we test our platforming method that plans trains on routes and platforms without
generating conflicts inside stations. By adopting our two step method, we believe better timetabling and platforming
plans would be more quickly obtained and, as a consequence, a lot of conflict detection and simulation time of ‘wrong’
timetable or platforming plans would be saved.

This idea is not new. The Dutch Railways (NS) possess a platforming tool called STATIONS (Zwaneveld et al.,
1996; Zwaneveld, 1997) that does allow generation of platforming and routing solutions. STATIONS even allows
some shifts on train arrival and departure times. When NS produces a new timetable, STATIONS is used on check-
ing feasibility of platforming and routing in the larger stations. The French railway operator SNCF (Société Na-
tional de Chemins de Fer) together with IFSTTAR (Institut Français des Sciences et Technologies des Transports,
de l‘Aménagement et des Réseaux) have developed a platforming solution called RECIFE (Delorme et al., 2001).
RECIFE has mainly been used on the Pierrefitte-Gonesse junction near Paris and the Lille-Flandres station. None of
these tools is commercially available. Infrabel also believes that even after negotiation about adopting these solutions
and in the case of a positive outcome, too much adapting and integration work would have to be carried out. This
means a new platform plan generating tool had to be developed.

1.3. Time Constraints of a Platform Plan: Fixed versus Variable Arrival and Departure Times

Because no expert systems exist yet that solve countrywide timetabling and platforming for all stations at once,
Infrabel, like many other railway companies, prefers to decompose the planning work sequentially into macroscopic
timetabling and train platforming in stations. This means that for the platforming problem, train arrival and departure
times are supposed to be fixed. So, we take the following approach. Firstly, the nationwide macroscopic timetable
is automatically constructed, taking care that all minimal ride times, dwell times and headway times are respected.
This work was described in Sels et al. (2013, 2016). In the second phase, the construction of the platform plan is
performed for each station separately, with arrival and departure times for all trains in all stations considered fixed.
Some other train platforming research also considers the train arrival and departure time to be fixed and just chooses
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platforms and routes for all or as many as possible train movements (De Luca Cardillo, 1998; Delorme et al., 2001;
Billionnet, 2003). To the best of our knowledge, these tools have not been applied yet to all stations in a country
to verify the complete feasibility in all stations. Our platforming and routing model with fixed arrival and departure
times is described in (Sels et al., 2014). If in a station, due to these fixed times, not all trains can be platformed, it
is then considered the job of the human timetabler to slightly adapt some train arrival and/or departure times. Kroon
et al. (1997) mention that often just a few small changes of the order of a minute or half minute results in a few more
trains being able to be platformed. The appendix in Sels et al. (2014) gives an example of this. In our expert system,
we have also taken care that the acquisition of routing information, which is typically specific to the railway company,
is decoupled from the actual platforming module itself, which is the general problem that all railway companies face.
As such, the platform module can be run independently on input generated at other railway companies. This should
increase the potential use cases at other railway companies.

1.4. The Objective of a Platform Plan

Caprara et al. (2011) discuss many components that can be part of the objective of a platforming plan. They
minimize an objective function, which is a quadratic function of, among others, deviation from preferred platforms
and deviation from platform times. Other terms concerning platform choice are related to the number of used plat-
forms, used but not preferred platforms, never preferred, simultaneously used and dummy platforms. There are also
platforming quality related terms like the total number of time shifts compared to the macroscopic timetable that was
needed in the platforming solution, the number of dynamic conflicts allowed, the number of trains assigned to a non
preference platform and the number of trains assigned to a dummy platform. Infrabel currently prefers to just platform
as many as possible of the planned trains in each station. Therefore, our objective function is the number of trains that
are platformed on real platforms. Like other research, as for example Caprara et al. (2011), we model a fictive platform
to hold any train movements that cannot be placed on real platforms. Naturally, we will penalise the assignment of a
train to the fictive platform stronger than the assignment of a train to a real platform. Note that on the fictive platform
track, multiple trains can be present at the same time. Thanks to the fictive platform, we will also be able to report
which trains could not be assigned to a platform, if any, rather than just having to report the problem to be infeasible.

1.5. Research Questions

Our main research question of this paper is whether adding automated platforming to the process of designing
a new timetable, can work in practice, and if so, what its benefits are. Can more trains be placed by the automatic
platformer than is the case for the human planners? Are any problems still present in the manual plans and can these
be resolved in the automatically generated platform plans? Does the computation of the platform plans of all stations
take more or less time than the time spent manually platforming all essential stations? Is robustness of the solutions
of the automatic platformer better or worse than the solutions for manual planners? Possible problems preventing the
construction of a platforming solution could be that not all input data is present to compute such solutions. It could
also be that tool users feel they lose too much control over platform and route assignment. These research questions
will be answered after a detailed exposition of our method and the results achieved.

1.6. Paper Overview

In this paper, we demonstrate that our platforming model is generally applicable on any station in Belgium and
that it both indicates problems in manually made platforming plans, if they already exist, as well as automatically
and quickly produces platforming plans without these problems. Section 2 discusses the train platforming problem
in some more detail. Section 3 describes the needed data input and user parameter input and shows the graphical
output for an example station. Section 4 shows key performance indicators for application of our expert system on the
hardest 18 stations. It also shows averages and totals for the indicators over all 530 stations. The sections 5, 6 and 7
answer the research questions, draw conclusions and indicate possible further work.

2. The Train Platforming Problem

Essentially, a platforming model has to map train traffic onto station infrastructure, taking care that no trains
collide. We specify more in detail which input data is required, how it is obtained or derived and combined.
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2.1. Infrastructure Input
Figure 1 schematically pictures a station and the infrastructure elements that have to be modelled to solve a

platforming problem. These elements will now be discussed one by one. Figure 1 clearly shows that the TPP is to
be distinguished from the train routing problem in shunting yards. Indeed, shunting yards are tree shaped bundles
of tracks often connected to station areas. The shunting problem consists of recombining cars of freight trains into
other sequences in the most efficient manner. This comes down to a shortest path problem with additional multiple
domain-specific constraints (Adlbrecht et al., 2015).

(switch) grid (switch) gridplatform tracks

station boundary

(open) lines (open) lines

fictive platform

Figure 1: Platforming on Infrastructure

Lines, sometimes called open lines, are the railway tracks that trains ride on from station to station. To define a
macroscopic timetabling problem, for each train type and composition, a minimum ride time has to be known. For
the platforming problem in a station, the lines serve as entry or exit point of a station.

Platform tracks are the tracks that passengers have access to in a station. Passengers can board or alight a train
when the train stops at a platform track.

An in-route is a path that connects a line to a platform track. An out-route is a path that connects a platform
track to a line. Routes are located in grids, sometimes called switch grids. Since it is practical for platforms to be
laid out parallel to each other, stations most commonly have two sides only and this typically leads to two switch
grids. In Belgium, all stations can be captured by this abstract layout. For ’head stations’, like Oostende, which have
lines connected to it on only one side due to the presence of the North Sea on the other side, one of the switch grids
degenerates to the empty switch grid. So these stations can be represented by our model as well. Note that in figure
1 one has to additionally imagine that from each open line to the fictive platform track, there exists a fictive route as
well. Similarly, to each open line, from the fictive platform track a fictive route exists as well. These have been left
out to not overload the figure. Railway companies define routes on top of the infrastructure hardware. These routes
are implemented in embedded software and define the set of paths along which trains can ride from (to) a certain line
to (from) a given platform track.

To avoid train collisions on routes, it will be important to know if a pair of routes is totally separated or not. We
call a pair of routes dependent if they share at least one part of the infrastructure. One example is a pair of crossing
routes. A second example is a pair of identical routes. This dependency or independency of all pairs of routes will
have to be derived by the software. How this is done is described in section 2.3.

2.2. Train Traffic Input: Movements and Occupations
Train traffic is known in terms of train movements coming into the station and going out of the station. Each

in-movement specifies a train number (ID), an input line and a station arrival time. Each out-movement specifies a
train number (ID), an output line and a station departure time. For an in-movement, the platformer has to deduce a
platform track and a compatible route between the in-line and platform-track. For an out-movement, the platformer
has to deduce a platform track and a compatible route between platform track and the out-line.
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Sets of in and out-movements are grouped into occupations. Each occupation implicitly specifies that all its
movements have to occur on the same platform track. As such, a train pass and a train stop are occupations with each
one in-movement and one out-movement. However, also train splits and train merges can be specified as occupations.
Indeed, a train split could have one in-movement and two out-movements and a train merge could have two in-
movements and one out-movement. Leopard does not pose any limits on grouping of movements into occupations, so
even an occupation with say 4 in-movements and say 6 out-movements would be possible.

2.3. Platforming is Mapping Traffic on Infrastructure

One can now summarise the platforming problem as the challenge to choose, for each occupation, a certain
platform track and for each movement in each occupation, a certain route that is connected to that chosen platform
track. At any time, no two trains can be present on equal platform tracks. At any time, no two trains can be present
on dependent routes.

A platforming system needs to know or derive the time it takes for each train to take each route. However, the
Infrabel standard databases only contain information on speed restrictions and route lengths for some stations. So, for
this we had to use another data source. Infrabel uses the simulator LUKS of ViaCon and entered the whole Belgian
macroscopic and microscopic infrastructure in this application. This includes all the routes that are possible for trains
in all stations. For all these routes, speed restrictions were entered and route lengths can be deduced. LUKS can write
out a file with all these routes, that includes these speed restrictions, the route lengths and the components that occur
on these routes. Route components are switches, signals and tracks. Leopard then reads this file and derives which
route pairs are independent and which are dependent. Two routes are dependent if they share at least one component.
With this information, Leopard imposes constraints only between dependent route pairs, so that it avoids that two
trains simultaneously use these routes. With the speed restriction information, the model uses the maximum speed
that is allowed on the route tracks and calculates the corresponding minimal total time necessary to traverse the route.
The information from the LUKS file is added to the corresponding routes from the Infrabel database and as such the
platforming model for a station can be set up.

2.4. Our Platforming Model

We derived and discussed an Integer Linear Programming (ILP) model in Sels et al. (2014). We refer the reader
to Sels et al. (2014) for all details and a comparison with other platforming models. This model is also used in the
current paper. The topic of the current paper is the application of this model on all stations in Belgium. The type
of input needed for this tool and the type of output produced by it are described in section 3 while the results of the
application on all Belgian stations are given in section 4.

3. Platformer Input and Output

We describe our expert system Leopard from a user’s perspective. So we discuss the necessary input required,
also from the user, and the output Leopard produces.

3.1. Input from the User

Figure 2 shows the input part of the graphical user interface (GUI) of Leopard. The platformer user needs to
specify a date and a begin and end hour. Only train traffic that is planned during this time window in the Infrabel
databases will be platformed and routed. A station has to be selected as well from a listbox. These are the mandatory
input parameters. The further input fields are optional.

The ‘Fix Station Movements’ field can be set to three values: ‘fix’, ‘fixed’ and ‘unfix’. This is relevant for stations
where for some movements an in-line or out-line is unknown. In those cases, when the user selected ‘fix’ here, the user
will receive a pop-up window that asks the user to supply this missing input. This is done by selecting the line from a
listbox containing all possible lines. For an in-movement, only in-lines can be selected and for an out-movement, only
out-lines can be selected. The user’s selected lines are stored. This allows, via the ‘fixed’ mode, that in subsequent
runs of Leopard, the user does not need to reselect everything again. If the user wants to change any lines again,
he will have to select the ‘fix’-mode again. The third mode, ‘unfix’, is used to run Leopard in autonomous mode.
No user input is then required and Leopard will then select a random in-line or out-line for movements lacking this
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Figure 2: Leopard input GUI

information. This is only acceptable for temporary platform plans or in cases where relatively few movements are
missing this line information. Final platform plans should ideally be generated with the modes ‘fix’ or ‘fixed’.

The two checkboxes marked ‘if = real orig. platform tracks’ and ‘if = fictive orig. platform tracks’ refer to the
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conditions under which occupations of the same train relation are to be planned on the same platform track every
hour. These conditions are user selectable. Leopard looks at the original, human-constructed platform plan (called
the ‘original platform plan’), if available, and assumes that if in this platform plan, a pair of occupations of the same
train relation are planned on the same platform track, this should also be planned on the same platform track in the
Leopard constructed platform plan (called the ‘optimised platform plan’). The idea is that, if human planners have
reasons to plan periodically, Leopard can be forced to do so as well. The left checkbox in figure 2 requires this for two
occupations of a train relation if they are planned on the same real platform track. The right checkbox requires this for
two occupations of a train relation if they are planned on the (same) fictive platform track. Note that train occupations
on the fictive platform track in the original platform plan point to human planners either not being able to plan them
on a real platform track or just not having performed the job yet. If both checkboxes are left unchecked, Leopard
will not spend effort to platform any occupation pairs of the same platform track. Naturally, requiring periodicity of
platform planning will sometimes lead to optimised solutions that have fewer trains planned on real platform tracks.

The ‘Mirror unmatched movements by turn-around time’ field allows the user to indicate a number of minutes.
This number is needed for the following cases. When a time window, say from 7am to 9am is specified, some
occupations, say one from 6:58am to 7:02am will only partially fall within this time window. The in-movement at
6:58am will not be selected from the database. This means that the beginning in-movement of the occupation is
unknown. We then need to construct a placeholder in-movement. This in-movement is generated from the known out-
movement by supposing that it happens ‘x’ minutes before the out-movement. ‘x’ is the value that the user supplies
in this GUI field and was set to 5.0 in figure 2. Due to lack of any information about the line the train comes from, we
suppose that the train is coming in from the same line as the one mentioned in the out-movement. The treatment for
missing out-movements is entirely symmetrical.

Since mirrored movements are somehow invented ones, they can cause unrealistic conflicts with other movements.
If one wants to ignore these conflicts, one can check the checkbox at ‘Avoid routing conflicts also for Mirrored
movements’. If one want to also see the real movements and conflicts around the time window boundaries, another
option is of course to specify a larger time window that fully includes all movements the user is interested in and
possibly some more.

Leopard generates a visual representation of both the original platform plan and the optimised platform plan. It
also generates a picture of both platform plans interleaved together. This last representation allows to easily compare
what has changed between original and optimised platforming plans.

Checking the ‘Draw Long Text for Movements’ checkbox in the Leopard GUI results in the generated visual
platform plan showing additional information (station side: 1/2, movement direction IN/OUT, track A/B) in the text
describing the movements. For example, without this checkbox checked, a movement may be labeled as: ‘E7803’,
while with this output checked, the same in-movement may be labeled as ‘E7803_S:1_D:I_T:A’, additionally indicat-
ing to the user that this movement occurs at station side 1, has the in direction (I) and occurs on track A. This is more
informative but may generate quite some overlapping text with labels of other movements. In any case, this longer
text is still dynamically displayed as a tooltip when the user hovers over this text.

‘Mark and name times in occupations’ demarcates and names the specific times and their abbreviations as defined
in Sels et al. (2014) and reproduced in table 1. Note that two subsequent rows in this table marked in the same colour
indicate the same moment in time. For example, for an in-movement, trho = tphi, because the time the train head gets
out of the IN route is equal to the time the train head heads into the connected platform. Similarly, tpho = trhi for an
out-movement. Visualising this extra information will allow the user to understand the meaning of the time intervals
better at first use. Since this can also generate text overlap, once the meaning is understood, we recommend to switch
off this checkbox.

The four checkboxes for ‘Warn for (Real, Real)-dependent Route low reuse times’ allow the user to specify for
which cases of subsequent reuse time levels, the user wishes Leopard to generate visual indications in the output
platform plans. Leopard draws a line from the end time of a movement to the begin time of the next movement, if
these movements are using dependent routes. It does so in a colour that depends on the closeness in time of these two
events. If there is overlap, meaning the time difference between these events is zero or negative, the colour is red. If
the time difference is between 0 and 1 minute, dark orange is chosen. For a difference between 1 and 2 minutes, light
orange is chosen. For any time difference larger than 2 minutes and up to 3 minutes a green line is drawn. Of course,
red indicates an error, dark and light orange indicate warnings that can be seen as lack-of-robustness issues. Green
lines indicates dependent routes that are used by two subsequent trains with enough time in between to not cause
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Table 1: Movement time abbreviations and definitions.
abbreviation meaning

trhi train enters (in) routing head in
trho train leaves (in) routing head out
tphi train enters platform head in
trto train leaves (in) routing tail out
tparr train platform arrival time, the time the middle of the train arrives at the middle of the station as planned in the timetable.
tpdep train platform departure time, the time the middle of the train leaves the middle of the station as planned in the timetable.
tpho train leaves platform head out
trhi train enters (out) routing head in
tpto train leaves platform tail out
trho train leaves (out) routing head out
trto train leaves (out) routing tail out

frequent delay propagation. Note that all these overlap and robustness checks are performed on both the original and
the optimised platform plans. In the optimised platform plans, the red lines do not occur at all, since the constraint
that no two trains may use dependent routes at the same time is present in the mathematical model. However, dark
and light orange lines may occur in the optimised plan since low robustness is not forbidden by hard constraints nor
is it discouraged in the objective function.

In the GUI, in the minute entry boxes in the field ‘Define warning level Upper Times (min)’, the user can define
the specific minute boundaries at which he considers reuse times should be shown in dark orange, light orange and
green. These levels could be different in different stations or countries.

The field ‘Warn for (Real, Fictive)-Route time overlap’ checkbox has the following meaning. If Leopard generated
an optimised platform plan where some occupations had to be put on the fictive platform track, this partial solution
does not by itself tell the user what is the cause or are the combined causes of not being able to supply a total
solution with all occupations on real platforms. It could be that one occupation cannot be put on the only possible
platform for it, say platform 5 because there is another train occupying it. It could also be that the reason is a
combination of conditions. For example, if the occupation f on the fictive platform were to be platformed on the still
free platform 5, occupation x’s out-movement would be in conflict with the in-movement of occupation f. Also much
more complicated reasons involving many more occupations and nested conditions could prevent occupation f from
being platformed on a real platform. We have chosen to only visualise the ’simultaneity aspect’ of these problems.
So we checked the times of movements of fictive occupations and movements of real occupations and connected
them with a red dashed line if they occur simultaneously. Any of these lines indicates a possible cause of the fictive
occupation being on the fictive track.

Via the three checkboxes at ‘Popup Platforming plan for’, the user can indicate if he wants to see the original
platforming plan, the optimised one and/or both together in one output graph. Examples of each of these output
graphs are shown in section 3.2.

The green text in the bottom half of figure 2 is progress log text of Leopard. It tells the user what Leopard is busy
with and gives an idea of how long it will still take. In case the input database contains inconsistencies, the user will
see an error there as well. The last output lines show in which directory the output files in Scalable Vector Graph
(SVG) format are written to before these files are popped up as tabs in the browser. The main advantages of the SVG
format are that all modern browsers can visualise these files, that it is possible to jump from one place to another when
the user clicks an object and that it is possible to show information dynamically and conditionally like when a user
hovers over an object. These features are used by our system as will be discussed in the next section.

3.2. Output to the User

As mentioned, Leopard generates up to three SVG files for the original, optimised and combined platform plans.
We give an example of each in respectively figure 3, 4 and 5. These are all platforming plans for the station of Namur.
All three figures show the time axis as the horizontal axis. The platforms are enumerated from I to XI along the
vertical axis. Train occupations are shown as yellow rectangles. A basic train occupation shows one in-movement at
the start (left) of the rectangle and one out-movement at the end (right) of the rectangle. In-movements are shown in
blue and out-movements in brown.
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Figure 3: Namur original platform plan, created by human planners and drawn by Leopard

Figure 3 shows the manually created platform plan. In this paper, we will also call this the original plan. Figure
3, around 6:26 on platform track IV, two red line segments indicate that train [ME4956 - E4956] and train [E904 -
E928] are both present on this platform track at the same time. The red text ‘-6.00’ indicates that this problem of
overlap of time windows has a duration of 6 minutes. This overlap is a planning mistake in the original platform plan.
Figure 3 shows dark and light orange lines as well, indicating dependent route reuse robustness issues, but these are
to be considered as warnings rather than planning errors. Around 6:37, a dark orange line connects the end of the
outgoing train movement E9406, leaving platform track III, to the beginning of the outgoing train movement E928,
leaving platform track IV. The text ‘0.42’ indicates that 0.42 minutes pass between the time that the tail of the train
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E9406 leaves the route and the time the head of the train E928 enters a dependent route. So if train E9406 would be
delayed by 0.42 minutes or more and train E928 would be on time, both trains would be using dependent routes at the
same time. This means that the route assignment of these two movements is not very robust. Similarly, around 6:52,
only 0.61 minutes are available between the IN-movement E3805 towards platform IV and the OUT-movement E4578
leaving from platform track V, so a dark orange line also connects these movements, giving a warning that robustness
is low here. Around 07:04, a light orange line is drawn from OUT-movement EE7601 leaving from platform VII
to the OUT-movement E6277 leaving from platform IX. The text ‘1.96’ next to this light orange line indicates that
1.96 minutes are left between these movements. With the default user settings in Leopard, the following thresholds
correspond to the following colours. If the time between movements on dependent routes is between 0 and 1 minute,
the line colour is dark orange. If the time between movements is between 1 and 2 minutes, the line colour is light
orange. If more than two minutes passes between such movement pair, the line colour is green, meaning there is no
major robustness issue between these movements. If the time between movements on dependent routes is greater than
5 minutes, no lines are drawn anymore since these movements are considered far enough apart to not give rise to
frequent delay propagation problems. Note that the numbers marked at all dark orange, light orange and green lines
consistently are positive. This means that there is no time overlap of the usage intervals of dependent routes. In the
manually produced platforming plans for other stations than Namur, for some movements on dependent routes, cases
with time overlap were detected. These cases were indicated with red lines between the overlapping movements and
a negative number then indicates the overlap time.

Figure 4 shows the optimised platforming plan that Leopard generated for the station of Namur. Clearly, there are
no red lines, so there are no two trains using the same platform at the same time and neither are there dependent routes
used at the same time by two different trains. There are still orange lines, but these were not explicitly forbidden nor
discouraged by the model. Similarly to the original platforming plan in figure 3, there are also some train occupations
assigned to the fictive platform track. In other words, not all trains can be assigned to real platforms and routes without
generating a platform or routing conflict. The train split occupation [E15608 - E5756, E2505] and the occupation
[E7487, E7670], are assigned to the fictive platform. In the original platforming plan of figure 3, these same two
occupations were not assigned to a real platform either. However, in the original platform plan, four more occupations
were assigned to the fictive track: ME7488, E2527, E2427 and E7785. Leopard was able to assign these four extra
occupations to real platform tracks without conflicts by changing the platform and route assignment of some other
train occupations. For stations like Namur, for which it is not possible to platform all trains, a solution with the
maximum platformable set of trains, without generating any conflict, is reported.

Figure 5 shows both the original and the optimised platform plan for Namur, interleaved in one picture. The
original platform plan has been shifted up by half a platform division to avoid rectangle overlap between the original
and optimised plans. When loading this platform plan in a browser, one can click on any rectangle of the original plan
and some integrated javascript code will then scroll the picture up to the corresponding rectangle in the optimised plan
and vice versa. This makes it easy to see which platform occupations have changed. Note that in quite some cases
the chosen platform track in the optimised platform plan is not far removed from the chosen platform in the original
platform plan. This is because the objective function for this case contained terms that penalise deviations from the
platform track in the original plan. This penalty is proportional to the number of tracks deviated.

4. Results of Application on all Belgian Stations

In the previous section, we have shown that Leopard can be started from a GUI and have shown the graphical
output that Leopard generates for one station, Namur. Leopard can also be run from the command line including
the specification of all settings for parameters mentioned in the GUI. In that case, no user interaction is required.
This allows creation of a script that runs Leopard in batch for all stations in Belgium. Such a script was run for
all 530 stations in Belgium. Tables 2 and 3 show some parameters of original and optimised platform plans for
the 16 stations that required the highest computation time for the first objective function (as shown in columns 3
and 4). The objective function for the optimised platform plan has been set to four different functions. First it was
set to ‘progressive non-periodic’. ‘Progressive’ means that in the optimisation, deviation from the original platform
assignments is not penalised. ‘Periodic’ means that occupations assigned to the same real platform tracks in the
original platform plan and belonging to the same train relation are not forced to occur on the same platform track
in the optimised platform plan. In the column headings of tables 2 and 3, the mention of ‘Real:P’ signifies ‘Real
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Figure 4: Namur optimised platform plan, generated and drawn by Leopard

Periodical’ and means that when two train movements belonging to the same train relation and occurring on the same
platform track in the original platforming plan, these are also forced to occur on the same platform in the optimised
platform plan. This happens via addition of extra hard constraints to the model. The ‘Real:P’ corresponds to the case
where the GUI setting ‘if = real orig. platform tracks’ is checked. This was described in section 3.1. The same holds
for occupations of the same train relation that are both assigned to the fictive track in the original platform plan. So
‘Fict:P’ means Fictive Periodical. ‘Real:NP’ stands for ‘Real Non-Periodical’ and corresponds to the case where the
GUI setting ‘if = real orig. platform tracks’ is unchecked and no corresponding periodicity constraints are added to
the model.
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Figure 5: Namur original and optimised platform plans drawn by Leopard for human comparison

The second objective function adds the deviation in number of platform tracks from the original to the optimised
platform plan as extra terms. Since the objective function is always minimised, pressure is on the solver to produce
solutions that contain platform choices not too far removed from what was chosen in the original platform plan. Since
the goal of trying to platform as many trains on real platform tracks has a higher priority than staying close to the
originally assigned platform track, a ‘big M’-coefficient was used to realise both sub-goals with a single objective
function. This compound objective function was then once used with (Real:NP, Fict:NP), once with (Real:P, Fict:NP)
and once with (Real:P, Fict:P).

For each objective function, for each station, an optimisation was run with Gurobi v6.0.0 (G columns) and one
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with FICO XPRESS v7.6 (BCL v4.6.1) (X columns). Gurobi was run on a 64 core server Intel Xeon CPU E5-4650 at
2.693 GHz with 268 GB of RAM running Windows Server 2008 R2 Enterprise while XPRESS was run on a 4 core
desktop Intel Xeon CPU E31240 3.30GHz with 16 GB of RAM running Windows 7 Enterprise.

We now describe the results for all these different objective functions for the station of Aalst which is the first
station given in table 2. ‘unplatformed occupations/31’ in the first column and ‘4’ in the column of the original,
human constructed platform plan (column 2) means that in Aalst, there are 4 occupations that were not assigned to
real platform tracks in the original platform plan out of a total of 31 occupations in the window from 6am to 9am.
The c(0,6) in column 2 means that there were 0 platform conflicts and 6 route-conflicts in the original platform plan
of Aalst. Columns 3 up to 10 are about the optimised, Leopard generated platform plans and do not need to indicate
conflicts since no conflict ever occurs in these optimised plans. Indeed, our model has hard constraints that forbid any
of those conflicts. However, columns 3 up to 10 do indicate the number of occupations that are assigned to the fictive
platform track, so are unplatformed. We see that columns 3 and 4 indicate that for Gurobi and for XPRESS, the same
number of occupations are put on the fictive track. In the case of Aalst, there are 4 of these. Since for both solvers,
(i) we solve the same model, (ii) up to optimality (MIP gap = 0%) and (iii) because of our safe ‘big M’-value, the
same number of unplatformed occupations will always result per station for both solvers. So for two different solvers,
the same platforming problem can result in two different solutions but these solutions will necessarily show the same
number of train occupations on the fictive platform. This can indeed be verified in tables 2 and 3.

Columns 5 and 6 show that for the objective function that additionally also tries to reduce the deviation from
platform tracks that were preferred in the original platform plan, the number of unplatformed occupations remains
the same; 4. This is logical, since no extra hard constraints have been added from columns 3 and 4 to columns
5 and 6. However, if we add hard periodicity constraints to our model requiring that some occupations pairs have
to occur on identical platform tracks, the number of unplatformed occupations can increase. This is illustrated in
columns 7 to 10 which all show that 5 occupations could not be platformed for Aalst. This incidates that requiring
periodicity can sometimes reduce the effective capacity of a station. The first row of the report on Aalst also shows
the computation time in seconds which is between 0.0911 seconds and 0.153 seconds. This is very quick indeed. The
rows ‘dark orange indications’, ‘light orange indications’ and ‘green indications’ show the number of lines between
dependent routes that are drawn in the output pictures. The meaning of these lines as indicating robustness of the
solution was described in detail in section 3.2. How to control the thresholds via the GUI to change major and
minor warning levels was described in section 3.1. Tables 2 and 3 consistently show results for thresholds levels
set to 1, 2 and 3 minutes as also indicated in figure 2. We represent the number of red, dark orange, light orange
and green lines with the tuple (r, do, lo, g). For Aalst, we see that the original platform plan in column 2 shows
(r, do, lo, g) = (6, 12, 9, 12) while this tuple is lowered to (0, 9, 5, 10) for the Gurobi solution in column 3. This
means that fewer pairs of movements on dependent routes are close together, which means that robustness of this
Gurobi solution is better than for the original platform plan. We give an, admittedly somewhat artificial measure of
robustness, by the always negative expression R = −32 · r − 22 · do − 12 · lo. The green lines do not play a role in the
robustness score since the movements they connect are considered to be separated by enough time to be robust against
delays. The lower this expression is, the worse the robustness is. For the original platform plan, this robustness score
becomes Rorig = −32 ·r−22 ·do−12 · lo = −9 ·6−4 ·12−1 ·9 = −111. For the Gurobi optimised schedule this becomes
Ropt = −9 ·0−4 ·9−1 ·5 = −41. and for the XPRESS delivered solution, this gives Ropt = −9 ·0−4 ·12−1 ·4 = −52.
Robustness is better for both optimised platform plans than for the original one. Of course, the fact that 4 occupations
are not planned in the optimised platform plans could play a role in this. In the end, the manually planned platform
plans, like the optimised platform plans, should also become void of platform and route conflicts and then robustness
comparison between them will be fair.

The other stations in tables 2 and 3 show that optimisation times are mostly less than a few seconds. Brussel-Zuid
and Brussel-Noord are the only exceptions to this. They are the largest stations both in terms of platform tracks and
train traffic. Antwerp-Centraal is large as well in both respects but is composed of three physical levels that have
little interaction with each other, which simplifies the platforming problem. Solving Brussel-Zuid, depending on the
chosen objective function, takes from 95 up to 2905 seconds for Gurobi and always 2 hours for XPRESS. We chose
two hours to be the maximum allowed optimisation time limit and for XPRESS it means that no optimal solution is
reported. Even then, we see that the same amount of unplatformable occupations is reported as for the Gurobi reported
solutions. Solving Brussel-Noord takes between 19 and 225 seconds for Gurobi and between 18 and 649 seconds for
XPRESS. When looking at the number of platform conflicts and route conflicts reported in the original platforming
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Table 2: Optimisation time in seconds. Stations 1 to 8 for train traffic from 6am to 9am. P = Periodical, NP = Non Periodical.
6am - 9am 6am - 9am 6am - 9am 6am - 9am 6am - 9am
Original Optimised Optimised Optimised Optimised

Progressive Min. Distance Min. Distance Min. Distance
Real:NP, Fict.:NP Real:NP, Fict.:NP Real:P, Fict.:NP Real:P, Fict.:P

1 2 3 4 5 6 7 8 9 10
G X G X G X G X

Aalst (#conflicts) resp. (s) c(0.6) (≤ 0′) 0.0911 0.082 0.119 0.128 0.153 0.149 0.153 0.151
unplatformed occupations/31 (≤ 0′) 4 4 4 4 4 5 5 5 5
dark orange indications (≤ 1′) 12 9 12 9 9 9 9 9 9
light orange indications (≤ 2′) 9 5 4 5 5 6 6 5 6
green indications (≤ 3′) 12 10 9 7 7 8 8 10 8
robustness score -111 -41 -52 -41 -41 -42 -42 -41 -42
Antw.-Centraal (#conflicts) resp. (s) c(12,0) (≤ 0′) 3.53 6.909 2.63 2.943 5.84 8.690 7.31 8.641
unplatformed occupations/82 (≤ 0′) 0 6 6 6 6 9 9 9 9
dark orange indications (≤ 1′) 3 1 1 1 1 1 1 1 1
light orange indications (≤ 2′) 24 18 19 16 16 16 16 13 16
green indications (≤ 3′) 6 6 5 4 4 8 8 7 8
robustness score -228 -22 -23 -20 -20 -20 -20 -17 -20
Antw.-Berchem (#conflicts) resp. (s) c(0,0) (≤ 0′) 0.253 0.300 0.234 0.294 0.288 0.290 0.288 0.292
unplatformed occupations/140 (≤ 0′) 0 15 15 15 15 18 18 18 18
dark orange indications (≤ 1′) 0 0 0 0 0 0 0 0 0
light orange indications (≤ 2′) 0 0 0 0 0 0 0 0 0
green indications (≤ 3′) 7 0 0 0 0 0 0 0 0
robustness score 0 0 0 0 0 0 0 0 0
Braine-le-Compte (#conflicts) resp. (s) c(0,1) (≤ 0′) 0.124 0.229 0.134 0.222 0.242 0.349 0.161 0.372
unplatformed occupations/37 (≤ 0′) 0 0 0 0 0 0 0 0 0
dark orange indications (≤ 1′) 0 6 9 1 1 0 0 6 0
light orange indications (≤ 2′) 9 5 3 5 5 6 6 3 6
green indications (≤ 3′) 1 3 4 3 3 3 3 1 3
robustness score -18 -29 -39 -9 -9 -6 -6 -27 -6
Brugge (#conflicts) resp. (s) c(1,1) (≤ 0′) 0.316 0.659 0.377 0.690 0.569 0.991 0.569 1.036
unplatformed occupations/50 (≤ 0′) 0 3 0 3 3 3 3 3 3
dark orange indications (≤ 1′) 4 3 2 2 2 2 2 2 2
light orange indications (≤ 2′) 10 13 11 9 9 9 9 12 9
green indications (≤ 3′) 7 3 7 4 4 4 4 7 4
robustness score -51 -25 -19 -17 -17 -17 -17 -20 -17
Brussel-Lux. (#conflicts) resp. (s) c(4,0) (≤ 0′) 0.916 0.504 0.415 0.551 0.432 1.197 0.432 1.226
unplatformed occupations/54 (≤ 0′) 0 0 0 0 0 0 0 0 0
dark orange indications (≤ 1′) 5 0 1 0 0 0 0 0 0
light orange indications (≤ 2′) 3 8 9 3 3 3 3 6 3
green indications (≤ 3′) 28 26 30 35 35 27 27 29 27
robustness score -87 -8 -10 -3 -3 -3 -3 -6 -3
Brussel-Zuid (#conflicts) resp. (s) c(12,12) (≤ 0′) 94.64 7200’ 104.42 7199.82 862.86 7200’ 2905.2 7200
unplatformed occupations/223 (≤ 0′) 0 8 8 8 8 13 13 13 13
dark orange indications (≤ 1′) 36 25 26 27 28 26 22 23 22
light orange indications (≤ 2′) 91 84 89 83 82 80 78 80 78
green indications (≤ 3′) 55 51 58 54 56 44 51 49 51
robustness score -535 -184 -193 -191 -194 -184 -166 -172 -166
Brussel-Noord (#conflicts) resp. (s) c(0,4) (≤ 0′) 18.92 17.56 20.96 34.60 135.52 619.42 224.51 649.03
unplatformed occupations/219 (≤ 0′) 0 39 39 39 39 61 61 61 61
dark orange indications (≤ 1′) 21 3 4 2 2 1 1 1 1
light orange indications (≤ 2′) 121 66 67 67 65 49 49 51 49
green indications (≤ 3′) 63 37 41 29 28 23 24 21 24
robustness score -241 -78 -83 -75 -73 -53 -53 -55 -53

plans in column 2 in the c(.,.) notation, one remarks that there are usually only very few platform overlap problems. In
fact, the only stations with platform conflicts are Antwerp-Centraal which has 12, Brugge (1), Brussel-Luxembourg
(4), Brussel-Zuid (12) and Charleroi-Sud (4). When platforming manually, the used drawings directly show these
overlaps, so this must mean that these manual plannings are work in progress.

In the original, manually produced platform plans, the number of route conflicts is not zero for a number of sta-
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Table 3: Optimisation time in seconds. Stations 9 to 16 for train traffic from 6am to 9am. P = Periodical, NP = Non Periodical.
6am - 9am 6am - 9am 6am - 9am 6am - 9am 6am - 9am
Original Optimised Optimised Optimised Optimised

Progressive Min. Distance Min. Distance Min. Distance
Real:NP, Fict.:NP Real:NP, Fict.:NP Real:P, Fict.:NP Real:P, Fict.:P

1 2 3 4 5 6 7 8 9 10
G X G X G X G X

Charleroi-Sud (#conflicts) resp. (s) c(4,5) (≤ 0′) 0.909 2.94 3.58 1.962 2.79 4.532 3.06 4.472
unplatformed occupations/63 (≤ 0′) 2 5 5 5 5 6 6 6 6
dark orange indications (≤ 1′) 9 9 9 8 8 5 6 7 6
light orange indications (≤ 2′) 11 17 13 14 16 15 14 15 14
green indications (≤ 3′) 15 11 12 7 5 9 9 10 9
robustness score -156 -53 -49 -46 -48 -35 -38 -43 -38
Denderleeuw (#conflicts) resp. (s) c(0,31) (≤ 0′) 0.163 7200 1.64 217.24 4.37 16.01 3.42 16.20
unplatformed occupations/64 (≤ 0′) 0 19 19 19 19 25 25 25 25
dark orange indications (≤ 1′) 18 9 9 11 11 3 3 2 3
light orange indications (≤ 2′) 24 10 13 7 9 11 11 14 11
green indications (≤ 3′) 21 12 15 9 9 8 8 9 8
robustness score -375 -46 -50 -51 -53 -23 -23 -22 -23
Dendermonde (#conflicts) resp. (s) c(0,3) (≤ 0′) 0.174 0.257 0.288 0.477 0.579 0.951 0.579 0.955
unplatformed occupations/42 (≤ 0′) 0 3 3 3 3 3 3 3 3
dark orange indications (≤ 1′) 4 0 1 1 1 1 1 0 1
light orange indications (≤ 2′) 9 10 10 9 9 7 7 8 7
green indications (≤ 3′) 7 7 6 3 3 4 4 4 4
robustness score -52 -10 -14 -13 -13 -11 -11 -8 -11
Flémale-Haute (#conflicts) resp. (s) c(0,25) (≤ 0′) 1.110 3.963 2.20 2.067 3.06 2.377 1.044 2.41
unplatformed occupations/21 (≤ 0′) 0 5 5 5 5 6 6 6 6
dark orange indications (≤ 1′) 9 7 7 7 7 7 7 7 7
light orange indications (≤ 2′) 8 5 3 5 5 5 5 5 5
green indications (≤ 3′) 12 9 13 8 8 8 8 9 8
robustness score -269 -33 -31 -33 -33 -33 -33 -33 -33
Gent St.-Pieters (#conflicts) resp. (s) c(0,12) (≤ 0′) 1.100 1.932 1.94 1.564 2.92 4.292 3.64 . 4.31
unplatformed occupations/97 (≤ 0′) 1 8 8 8 8 12 12 12 12
dark orange indications (≤ 1′) 23 19 18 14 14 10 10 11 10
light orange indications (≤ 2′) 23 17 16 22 22 17 17 17 17
green indications (≤ 3′) 28 26 20 16 16 19 19 12 19
robustness score -223 -93 -88 -78 -78 -57 -57 -61 -57
Hasselt (#conflicts) resp. (s) c(0,5) (≤ 0′) 0.310 0.754 0.357 0.526 0.374 0.694 0.769 0.677
unplatformed occupations/47 (≤ 0′) 0 0 0 0 0 0 0 0 0
dark orange indications (≤ 1′) 7 11 9 8 8 8 9 10 9
light orange indications (≤ 2′) 11 12 11 10 10 9 9 11 9
green indications (≤ 3′) 12 9 14 13 13 13 13 9 12
robustness score -84 -59 -47 -42 -42 -41 -45 -51 -45
Kortrijk (#conflicts) resp. (s) c(0,4)(≤ 0′) 0.298 0.371 0.723 0.530 0.556 0.592 0.306 0.584
unplatformed occupations/47 (≤ 0′) 0 3 3 3 3 7 7 7 7
dark orange indications (≤ 1′) 4 2 3 2 2 1 1 1 1
light orange indications (≤ 2′) 11 13 12 11 11 9 9 9 9
green indications (≤ 3′) 17 10 11 10 10 7 7 11 7
robustness score -63 -21 -24 -19 -19 -13 -13 -13 -13
Leuven (#conflicts) resp. (s) c(0,1) (≤ 0′) 1.052 3.532 1.76 1.250 2.92 4.386 1.610 4.36
unplatformed occupations/84 (≤ 0′) 0 0 0 0 0 6 6 6 6
dark orange indications (≤ 1′) 5 8 7 7 7 5 5 7 5
light orange indications (≤ 2′) 9 7 12 9 9 9 9 11 9
green indications (≤ 3′) 17 14 12 17 17 15 15 12 15
robustness score -38 -39 -40 -37 -37 -29 -29 -39 -29

tions: Aalst has 6, Brain-le-Compte has 1, Brugge has 1, Brussel-Zuid has 12, Brussel-Noord has 4, Charleroi-Sud has
5, Denderleeuw has 31, Dendermonde has 3, Flémale-Haute has 25, Gent Sint-Pieters has 12, Hasselt has 5, Kortrijk
has 4 and Leuven has 1. These conflicts can sometimes be caused by mirrored movements at the boundaries in which
case they are not actual conflicts. In the other cases they still have to be inspected and corrected by the timetablers.
In the current practice of planning without Leopard, these route conflicts are not shown in any visualisation, so this
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makes Leopard a useful addition to the platforming tools. The objective of the final timetable and associated platform-
ing plans for all stations should be to have platforming plans that have no single platforming conflict and no single
route conflict. Leopard is the ideal tool to automatically check that. In any case, whether the original platforming
solution contains conflicts or not, an optimised solution is also calculated. This solution has to be seen as the best
possible solution without conflicts. It can be used as a suggestion for improvement in case of conflicts in the original
solution.

To allow timetabling and platforming practitioners at Infrabel to evaluate the platformability of a new timetable
and also inspect some more specifics of the automatically generated platforming plans in all stations easily, Leopard
can automatically generate an overview spreadsheet of this information for all stations. A partial extract of such a
spreadsheet is shown in table 4 for the original platform plans and table 5 for the optimised platform plans. These
figures show the same properties as given in tables 2 and 3, but now every row represents one station. The cells
showing the number of red, dark orange, light orange and green lines are now also coloured in the corresponding
colour. The blue underlined text Orig_Plan_401, Opt_Plan_401 and Both_Plan_401 are clickable links that will
popup respectively the original, optimised and combined platform plans for station number 401 in a browser. These
platform plans look like the figures 3, 4 and 5. So, say if a user sees a number of platform or route conflicts for a
station he wants to inspect in more detail, he can just click the corresponding link.

Table 4: Overview spreadsheet for comparison of original and optimised platform plans and their KPIs: original part

...

...

The bottom section of tables 4 and 5 show the totals and averages of all KPIs. For a different application date, a
one hour window and a different objective function from tables 2 and 3 it is shown that in the original platforming
plan, 4.75% of all occupations across all stations remained unplatformed while in the optimised platform plans, this
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Table 5: Overview spreadsheet for comparison of original and optimised platform plans and their KPIs: optimised part

...

...

was only 1.96%.
Table 6 gives some total and average values of properties for all 530 Belgian stations together. The optimisation

time limit per station was set to 7200 seconds. If no solution is found in that time, the station is counted as needing
7200s in calculation of totals or averages. Note that XPRESS can end after 7200 seconds, reporting a solution with a
gap higher than the required gap, while in the same situation, Gurobi considers this not as a valid solution and returns
no solution. These cases for XPRESS are marked with ’no’, which stands for not optimal. For Gurobi these cases are
marked with ‘>7200’, but no such case occurs.

The first row of table 6 shows the number of stations that could be solved for each of the four objective functions.
For Gurobi, this is always 530, while for XPRESS this is always 528. XPRESS does return the model to be invalid
if no train traffic is present in the specified time window and this is the case for 2 small stations. As mentioned,
for the XPRESS solver, for some instances the solutions are not optimal down to gap 0% since at the time limit
of 7200 seconds a non-optimal solution is allowed to be returned. Gurobi solves all 530 stations in less than 7200
seconds optimally. The total optimisation time over all stations together for Gurobi is significantly smaller than the
time needed for XPRESS, but this is mainly due to just a few stations on which XPRESS spends 7200 seconds.
Over the four objective functions, Gurobi spends an average computation time of 0.25 up to 5.97 seconds, while
XPRESS spends from 14.16 to 27.42 seconds on the same. Averaged over all 530 stations, XPRESS seems to find the
progressive mode of optimisation the hardest. It spends 27.42 seconds on it on average per station. Gurobi only spends
0.25 seconds on this. XPRESS spends relatively less time on objective functions that contain terms to minimise the
deviation of the original platform tracks. Gurobi finds the addition of the periodic platforming constraints and the
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minimisation of the deviations from the original platform tracks relatively harder since it spends more computation
time if these are added to the model.

Table 6: Optimisation time in seconds. Sum and average range over all 530 stations in Belgium. P = Periodical, NP = Non Periodical.
6am - 9am 6am - 9am 6am - 9am 6am - 9am 6am - 9am
Original Progressive Min. Distance Min. Distance Min. Distance

Real:NP, Fict.:NP Real:NP, Fict.:NP Real:P, Fict.:NP Real:P, Fict.:P
1 2 3 4 5 6 7 8 9 10

G X G X G X G X
# stations 530 528 530 528 530 528 530 528
sum optimisation time only (s) 132.87 14448.67 151.41 7474.51 1034.7 7877.09 3163.2 7906.70
average optimisation time only (s) 0.25 27.36 0.29 14.16 1.95 14.92 5.97 14.97
sum all time (s) 7620 18780 9780 11460 10200 18840 9480 14580
average all time (s) 14.38 35.57 18.45 21.70 19.25 35.68 17.89 27.61
# platformed occupations 11845 11673 11669 11673 11667 11421 11421 11421 11421
# unplatformed occupations 621 793 793 793 793 1045 1045 1045 1045
relative # unplatform occupations (%) 4.98 6.36 6.36 6.36 6.36 8.38 8.38 8.38 8.38
# lines = # conflicts:
red platform conflicts (≤ 0′) 158 0 0 0 0 0 0 0 0
red route conflicts (≤ 0′) 187 0 0 0 0 0 0 0 0
dark orange indications (≤ 1′) 534 175 178 151 151 131 126 147 126
light orange indications (≤ 2′) 1453 608 627 578 579 548 544 575 544
green indications (≤ 3′) 2206 1180 1243 1112 1110 1020 1025 1058 1025
robustness score -7800 -1308 -1339 -1182 -1183 -1072 -1048 -1163 -1048

In the second block of table 6, the number of platformed, unplatformed and percentage of unplatformed occupa-
tions are given. Columns 3 to 6 indicate that there are 793 unplatformed occupations for both solvers. When adding
periodicity constraints to the platforming mode in columns 7 to 10, this number rises to 1045. The original platform
plans have 4.98% of occupations platformed and the optimised non-periodical ones about 6.36% and the optimised
periodical ones about 8.38%. Note again that the original platform plans can more easily platform more occupations
since they still contain quite some conflicts while the optimised platforming plans are not allowed to contain any con-
flict. This is indeed shown in the last horizontal block of table 6, where column 1 shows that there are 158 platform
conflicts and 187 routing conflicts in the original platform plans of all stations together. The optimised platform plans
are verified to contain no conflicts as can be seen by the zeroes in columns 3 to 10. As for the collected numbers of
dark orange indications between movements on dependent routes, the fourth last row of table 6 shows that these are
significantly lower for both Gurobi and XPRESS columns than the numbers for the original platform plans in column
1. The situation is entirely similar for the light orange and green indications. This means that robustness should be
improved from original to optimised platform plans and the last row of table 6 confirms this indeed by its improved
(higher) robustness scores.

In our previous paper on platforming, Sels et al. (2014), Leopard was also used as platformer and router of trains,
but then in a context where station capacity was being estimated. This was done by adding supplementary trains that
are expected in the future and trying to platform and route them together with the currently planned trains, until no
supplementary train could be placed anymore. At large over-saturation of a station, the model is relatively hard to
solve optimally compared to models with an amount of trains that can all or can almost all be assigned to real platform
tracks. The computation times for these saturated and over-saturated situations were in the order of minutes. In the
current paper, we do not saturate the station with as much platformable traffic as possible, rather, we try to platform
only the traffic implied by the macroscopic timetable, which is of course a more realistic situation. It turns out that
this means that our computation times are much smaller. Indeed, an average 0.25s per station is shown here.

Table 7 gives totals and averages of the same properties as table 6, but now for a window of train traffic from 0h to
24h, so for a full day, instead of just the window from 6am to 9am. Also, table 7 only shows results for the objective
function ‘Minimim Distance, Real: NP, Fict: NP’. Naturally, with more train traffic to be platformed, computation
times and numbers of conflicts are larger. For Gurobi, only for one station, for Brussel-Zuid, 7200 seconds are not
enough to solve the problem. XPRESS can solve that station suboptimally in 23067 seconds. XPRESS has two
more stations that it cannot solve to optimality in two hours, Brussel-Noord and Flémalle-Haute, but it solves them
suboptimally in that time.
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Table 7: Optimisation for a 24h window. Sum and average range over all 530 stations in Belgium.
0am - 24pm 0am - 24pm

Original Optimised
Min. Distance

Real:NP, Fict.:NP
(NP = Non Periodical)

c(platform-conflicts, route-conflicts) G X
Aalst (#conflicts) resp. (s) c(0,0) 1.672 7.048
Antwerpen-Centraal (#conflicts) resp. (s) c(270, 0) 67.37 34.555
Antwerpen-Berchem (#conflicts) resp. (s) c(1,0) 1.504 1.350
Braine-le-Compte (#conflicts) resp. (s) c(6,0) 2.510 4.765
Brugge (#conflicts) resp. (s) c(3,8) 3.692 3.322
Brussel-Lux. (#conflicts) resp. (s) c(8,0) 5.096 7.534
Brussel-Zuid (#conflicts) resp. (s) c(212, 1098) >7200 >23067
Brussel-Noord (#conflicts) resp. (s) c(0,14) 1065.3 7200no
Charleroi-Sud (#conflicts) resp. (s) c(42,15) 14.99 19.08
Denderleeuw (#conflicts) resp. (s) c(0,93) 10.00 7200
Dendermonde (#conflicts) resp. (s) c(0,3) 2.632 1.785
Flémale-Haute (#conflicts) resp. (s) c(0,183) 11.46 7200no
Gent Sint-Pieters (#conflicts) resp. (s) c(0,112) 93.68 348.08
Hasselt (#conflicts) resp. (s) c(0,18) 3.53 3.269
Kortrijk (#conflicts) resp. (s) c(0,6) 4.32 2.560
Leuven (#conflicts) resp. (s) c(0,9) 13.34 10.43
# stations 530 528
sum optimisation time only (s) 8559 45175
average optimisation time only (s) 16.15 85.56
sum all time (s) 60720 104514
average all time (s) 115 198
# platformed occupations 64382 64275 64722
# unplatformed occupations 3425 3532 3572
# unplatformed occupations (%) 5.05 5.21 5.23
#lines = # conflicts:
red platform conflicts (≤ 0′) 1158 0 0
red route conflicts (≤ 0′) 946 0 0
dark orange indications (≤ 1′) 2339 628 725
light orange indications (≤ 2′) 6012 2274 2591
green routes (≤ 3′) 9822 5128 5283
robustness score -42410 -4786 -5491

Note that the number of unplatformed occupations for all stations together is in all cases about 5%. This is remark-
able, since even with the requirement of the platforming plans having to be free of conflicts, the same percentage of
total occupations platformed nationwide can still be achieved. Table 7 shows that the number of platform conflicts and
route conflicts are indeed zero for all optimised platform plans while the original platform plans have 1158 platform
conflicts and 946 route conflicts over all stations together. It also shows that route robustness issues, for each of the
3 categories, dark orange, light orange and green, occur much less than in the original platform plans as well. Con-
sequently, we find that the national robustness score for the original platforming plans together is a low -42410 while
the ones for the optimised platforms together are much higher. Indeed, for the Gurobi solutions this totals to -4786
and for the XPRESS solutions to -5491. So Gurobi performs about 13% better than XPRESS here. Note however that
no robustness was present in the objective function. However, a better robustness score is also quite an achievement
given that we platform the same amount of occupations as in the original platform plans, especially since we do this
without conflicts while the original platform plans still contain both platform and route conflicts. It should be noted
here that in a final timetable and its associated platform plans, all planned trains should be assignable to real platforms.

5. Answer to the Research Questions

The previous sections discussed our platforming tool and its results in detail. This section gives a more high level
visual impression of the quality of manually versus automatically platformed solutions over all stations in figure 6.
This helps to answer all research questions that were raised in section 1.5.
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5.1. Summarizing Comparison between Manually and Automatically Generated Platforming Plans

Figure 6 corresponds to the results of platforming traffic between 6am and 9am. For the automatic part, we took
the results produced by the solver Gurobi when run on our model in progressive mode, where occupations on real and
fictive platform tracks are not required to be planned periodically. This corresponds to column 3 in table 6.

0 Orig 450

0

Opt

450

Figure 6: Comparison of achieved number of platformed occupations between original (circles) and optimised (squares) platform plans, including
indications of platform conflicts (red downwards arrows), routing conflicts (red circles) and routing major robustness issues (dark orange circles or
squares), minor robustness issues (light orange circles or squares) and safe routing reuse times between 2 and 3 minutes (green circles or squares).

For the original platform plans, the horizontal axis in figure 6 shows the number of total occupations and the
vertical axis shows the number of manually platformed occupations. A set of concentric circles in the lower right
triangular half of figure 6 represents manually platformed stations. If the center of these circles lies on the line
describing x = y, all trains were platformed. If this center point lies below it, less than 100% of the occupations
was platformed in the manual plan. For the optimised platform plans, squares instead of circles, in the upper left
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triangular half are used to represent platforming results for stations. The center point of a square set represents how
many train occupations could be platformed by Leopard for that station. When this center point lies on the line x = y,
100% was automatically platformed. If x < y, the point lies a bit more to the left, meaning that less than 100% of
occupations could be automatically platformed. The colour of each disc or square: red, dark orange, light orange and
green refers to the colour of respectively, conflicts, major and minor robustness issues and safe separation occurrences,
as they were explained in section 3.2. The disc and square areas are proportional to the number of these respective
conflicts, major and minor occurrences and safe separation occurrences. So an original platform plan for a station that
shows a red disc contains routing conflicts. A red downward pointing arrow indicates that in that station’s original
platforming plan, some platform conflicts exist. The length of the arrow is proportional to the number of platform
conflicts occurring in that plan. So a red downward arrow suggests that the original platforming plan still has platform
conflicts and should not be considered to score as close to the diagonal line as the position of the circles suggests.

What is immediately obvious from figure 6 is that only for a few stations, a significant amount of traffic cannot
be platformed by Leopard while it seems to be platformed by the human planners. However, in each of these cases, a
significant amount of platform and routing conflicts exists in the human created plans, as can be seen by respectively,
the red downward arrows and the red circles. Leopard generated plans have no single platform nor routing conflict
as can be seen by the absence of red squares and absence of red left pointing arrows. So, figure 6 makes visually
clear that the cost of being strict about avoiding every single platform and route conflict in the planning is that one
can sometimes not platform the full 100% of occupations. Figure 6 also shows that when there are no conflicts in
the original plan, Leopard also finds a solution with a similar percentage of occupations platformed. The fact that
robustness for all stations together is better for the automatically generated platform plans than for the manually
generated platforming plans can be seen in figure 6 by noting that there are fewer red squares (none) than red circles
and fewer/smaller dark/light orange squares than dark/light orange circles.

For each specific station, the concentric circles representing the original platform plan are connected with a dashed
arrow to the squares representing the optimised platform plan. For most stations, there are no very long arrows, so
no huge changes in number of occupations planned automatically compared to manually. However, some stations
were not manually platformed at all. These stations are represented in figure 6 on the x axis at low values of x. The
fact that manual platform plans are lacking for these stations can be due to the fact that this was not done yet at
the time we evaluated the platform plans or because planners did not consider these stations were worth checking
or otherwise because they forgot to check them. Of course, the automatic platformer quickly runs over all stations
without exception. For most of these stations, Leopard can platform all occupations or a high percentage of them. One
can indeed see that the grey circles end up as grey squares on or close to the diagonal line. For a few stations only,
a low percentage, but still higher than 0%, can be platformed but for three stations, none of the occupations could be
platformed. For these three stations, no routes were defined yet. This problem would be resolved if Infrabel defined
routes in these stations as well.

We conclude that figure 6 nicely summarises the main aspects of a fair comparison between human and computer
generated platforming plans of all stations in Belgium. It shows the percentage of platformed occupations in a way
that allows visual comparison between the two plans for each station. It shows the amount of remaining platform as
well as remaining routing conflicts in red in the manual plans. It shows the lack of these conflicts in the optimised
plans. It also shows the amount of robustness issues in orange in both plans. It also shows whether a station was not
yet platformed manually and whether a station could not be platformed automatically due to lack of defined routes.
As a result it also clearly shows if all stations were platformed or not. The ideal end result for figure 6 would be that
all squares of stations are displayed on the diagonal line and there is as little orange present as possible.

5.2. Answer to the Research Questions and Gained Insights
Since automatic platforming spends at most a few hours on the largest stations while, according to De Luca Cardillo

(1998), it can take an expert human planner up to 15 days, it is clear that significant time can be saved by adopting an
automatic platforming tool. The quality of platforming has to be separated into (i) how many conflicts are left in the
plans, (ii) how many robustness issues are still contained in the plans and finally (iii) how many train are platformed
on real tracks. The automatic platformer certainly performs better on (i) and (ii). Given that it is strict about (i), that no
conflicts can remain, it sometimes platforms fewer trains than the manual platforms, but even so, we think it is better
to have a realistic plan than an over-optimistic one, since the latter will lead to train delays in practice. In total, over
all stations together, both original and optimised platform plans assigned about 95% of all trains to real platforms.
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Robustness of the optimised platform plans is significantly better than for the original plans, even though robustness
was not part of the objective of our platforming model (yet). So, overall our research questions could be answered
positively.

The use of our tool also gave rise to some further planner and managerial insights. For three stations, no routes
were defined, so no platforming plans could be generated. For some other stations, data concerning the line a train
originates from or goes to was absent from the databases and still requires human interaction. Both these cases of
lacking data input could be amended if this data was added to the Infrabel databases directly. When taking into
account that optimised solutions should preferably select platform tracks that stay close to the ones also selected in
the manually generated solution, naturally average platform deviation was lower than for the experiment not taking
this into account. Human planners indicated that they prefer this mode of operation of Leopard since then solutions
stay ‘close’ to what they are used to plan. This gives them more ‘control’ over the tool. Leopard then makes smaller
deviations only and still checks for errors.

6. Conclusions

For Infrabel, we developed a tool called Leopard that can now be used to check station platforming and routing
plans that were created by human planners. Leopard will produce a visual detailed error whenever two trains are
present on the same platform or route simultaneously and produce a visual detailed warning whenever these train
occupations are considered as being rather close together in time. Leopard can also automatically generate an optimal
station platform and routing plan, without platform or routing conflicts and with as many trains as possible assigned
to real platform tracks. Our tool produces graphical output and gives a robustness score for each analysed solution, be
it a manual or an automatically created one. This paper shows that for a three hour window of train traffic, on average,
the platforming plan for a Belgian station is calculated in 0.25 seconds with Gurobi. Only for a few stations it takes
more than a second.

Leopard can also be automatically run for all stations in Belgium. As such, it can be used to check the in-station
feasibility - according to the rules used by Infrabel planners - for all stations for a given macroscopic timetable.
Without going into microscopic detail, the presence of any platforming or routing issues in a station here already
indicate that the macroscopic timetable arrival and/or departure times need to be adapted in that station. Manually
adapting the timetable until all stations can place all trains on real platforms is the first context of use of Leopard.
When such a ‘platformable’ timetable is obtained, within Leopard, station per station, independently, various objective
functions can be explored to obtain the most desirable platforming plan for each station. For example, one could
choose to stay close to the platforms chosen in the original platform plan and/or one could choose to generate a
platforming plan where trains of the same periodic relation are assigned to the same platform track.

Leopard automatically generates an overview spreadsheet with key performance indicators for each station. These
performance indicators are totalised and averaged so that comparison of platformability, conflict freeness and robust-
ness can be readily compared per station but also globally for all stations together. From this sheet, for each station,
all graphical platform plans, containing all information, are easily accessible with one click. A plot comparing several
performance criteria between the manually and the automatically generated platform plans is also generated.

Our comparison of original and optimised platforming plans shows that in total, the amount of unplatformed train
occupations is in both cases about 5%. Bear in mind that even with this similar performance, our optimised platform
plans are conflictless and the original platform plans are not. Additionally, the robustness score for the optimised
platforms is also significantly better for the optimised platform plans than for the original ones. On average, over all
stations, Gurobi gives a somewhat better robustness score than XPRESS, but note that robustness was not part of the
objective function.

7. Further Work

Currently, database interfacing and writing out large graphical files consume more computer time than model
resolution. This could be improved upon by more caching of data, some database query reorganisation and use of
flash memory instead of traditional spinning hard disks which have higher access times.

Connection of our timetabling (Sels et al., 2016) and platforming (Sels et al., 2014) tools by automatically running
the platforming on the optimised timetable would open perspectives for further automation of the total planning
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process. Of course, the issue on how to automatically feedback intra-station problems of platforming or routing to the
inter-station macroscopic timetabling level and resolve them is still not automatically solved.
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Chapter 4

Other Publications as First
Author

During my PhD time I published more abstracts and papers. I do not include
the total text of these here, but merely refer to them. They can be found online
via the web-linked titles or via the references.

4.1 Deriving all Passenger Flows in a Railway
Network from Ticket Sales Data

Extended abstract presented at ORBEL, Gent, Belgium, 10-11 February 2011

• Authors: Peter Sels, Thijs Dewilde, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [30]

The idea is presented that local passenger numbers riding on trains, dwelling
on trains and transferring between trains can be derived from train ticket sales
data and knowledge of the train network.
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4.2 Calculation of Realistic Railway Station Capac-
ity by Platforming Feasibility Checks

Extended abstract presented at Models and Technologies for Intelligent
Transportation Systems (MT-ITS), Leuven, Belgium, 22-24 June 2011

• Authors: Peter Sels, Thijs Dewilde, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [40]

Our initial tool made for Infrabel that is able to calculate station capacity
estimates by platforming larger and larger sets of trains is presented. Typically,
the current set of trains is used and additional traffic that is expected in the
future is added to it. Each time the tool is run and the solution with the
maximum number of trains that can be platformed and routed without conflicts
is calculated. If not all trains can be platformed or routed anymore, station
capacity is exceeded. This tool was integrated at Infrabel in their planning tool
OCAPI.

4.3 Automated, Passenger Time Optimal, Robust
Timetabling, Using Integer Programming

Short paper presented at International Workshop on High-Speed and Intercity
Railways (IWHIR), Hong Kong - Shenzhen, 19-22 July 2011

• Authors: Peter Sels, Thijs Dewilde, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [29]

The first, preliminary results of the timetabling tool RhinoCeros, written for
Infrabel, on the set of all Belgian hourly trains are presented.

http://www.4c4u.com/ITS2011.pdf
http://www.4c4u.com/ITS2011.pdf
http://www.4c4u.com/IH2011.pdf
http://www.4c4u.com/IH2011.pdf
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4.4 Automatically and Quickly Planning Platform
and Route of Trains in Railway Stations with a
Case Study for Mechelen Station

Full paper at International Journal Conference for Technology and Engineering
(IJCTE), Bangkok, Thailand, 1-2 January 2014

• Authors: Peter Sels, Thijs Dewilde, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [34]

A case study of platforming and routing for the station of Mechelen is presented.

4.5 Light Rail, Tram and Bus co-Timetabling
Minimising Passenger Travel Time in Practice

Extended abstract submitted to Triënnial Symposium of Transportation Analysis
(TRISTAN), Oranjestad, Aruba, 13-17 June 2016

• Authors: Peter Sels, Niels van Oort, Sandra Nijënstein and Pieter
Vansteenwegen.

• Reference: [38]

In the above mentioned timetabling work, we have consistently produced cyclic
timetables for train networks that span an entire country. We now want to
explore if the used methodology and tools can also be used to produce cyclic
timetables for urban transport networks. The studied network is an intermodal
one with three modes of transport: light rail, trams and buses. It is clear that
there are some major differences. We mention some of them. (i) Buses do not
have to be separated by a minimum time in the timetable model since bus
drivers are taking care of avoiding collisions in real time. (ii) Traditionally, train
timetables specify both arrival and departure times at stations, while bus and
tram timetables usually only specify one station time. (iii) For buses and trams,
other vehicles continuously share lanes or tracks, which is not the case for trains,
so bigger stochastic riding time variations are expected than for trains. Even
with these differences, we are hopeful that the same software will be able to
generate timetables for these urban intermodal systems as well.

http://www.4c4u.com/IB2014.pdf
http://www.4c4u.com/IB2014.pdf
http://www.4c4u.com/TO2016Abstract.pdf
http://www.4c4u.com/TO2016Abstract.pdf




Chapter 5

Co-Authored Publications

During my PhD time, Thijs Dewilde was also doing research towards his own
PhD. We proof read and co-authored each other’s papers. This resulted in two
more conference and two more journal publications with Thijs as first author.
We enlist these here in sections 5.1 to 5.4.

5.1 Defining Robustness of a Railway Timetable

Full paper presented at International Association of Railway Operations Research
(IAROR) Rome, Italy, 16-18 February 2011

• Authors: Thijs Dewilde, Peter Sels, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [7]

Various definitions as given in the literature are given. The function of expected
passenger time in practice, including primary and secondary delays is presented.
This is a function that can be evaluated over the timetable. It is concluded
that the timetable that minimises this function is good for the totality of
passengers, since it brings them from their origin to destination as fast as
possible, statistically over many daily operations of this timetable. So by
definition of robust as a concept over statistical occurrences of delays, It is also
concluded that this timetable will be robust against delays, It is argued that,
unlike some other definitions, this is a definition of robustness that is practically

223

https://lirias.kuleuven.be/handle/123456789/294500
https://lirias.kuleuven.be/handle/123456789/294500


224 CO-AUTHORED PUBLICATIONS

usable to compute timetables. Computing such a timetable with this method is
exactly what we manage to do for this thesis, for Belgium and for Denmark.

5.2 Robust Railway Station Planning: An In-
teraction Between Routing, Timetabling and
Platforming (IAROR)

Full paper at International Association of Railway Operations Research (IAROR)
Copenhagen, Denmark, May 13-15 2013

• Authors: Thijs Dewilde, Peter Sels, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [9]

This paper studies the area of the Brussels North-South axis as well as the
station of Antwerp. It optimises timetabling, routing and platforming in one
unified approach instead of sequentially by first timetabling and then platforming
together with routing as this thesis does. Obviously a unified approach can
potentially generate a better optimum than a sequential one since interaction
indeed occurs.

5.3 Robust Railway Station Planning: An In-
teraction Between Routing, Timetabling and
Platforming (JRTPM)

Full paper in Journal: Rail Transport Planning & Management, 2013

• Authors: Thijs Dewilde, Peter Sels, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [10]

For the paper in section 5.2, Thijs Dewilde won the Young Railway Operations
Research Award 2013 of IAROR. Consequently, Thijs was invited to write a
reworked version of the paper for the JRTPM journal. After reviews by this
journal, this is the resulting paper.

https://lirias.kuleuven.be/handle/123456789/396888
https://lirias.kuleuven.be/handle/123456789/396888
http://www.sciencedirect.com/science/article/pii/S2210970613000279
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5.4 Improving the robustness in railway station
areas

Full Paper published in Journal: European Journal of Operational Research,
2013

• Authors: Thijs Dewilde, Peter Sels, Dirk Cattrysse and Pieter Vansteen-
wegen.

• Reference: [8]

This paper extends the previous ones by adding a simulator and its results and
by suggestions for improvement of the traffic flow. The case study is the train
traffic bottleneck in Belgium: the Brussels area.

5.5 Unification of Research

While I looked at timetabling at the country level separately and then at
platforming and routing for every station separately, Thijs essentially looked at
optimisation of timetabling, platforming and routing together, at the same time,
but for smaller areas. He studied the areas of the Brussels North-South axis
and the station area of Antwerp. We envision that our work could possibly be
integrated in the following way. It is expected that simultaneous optimisation of
timetabling, platforming and routing delivers better results than the sequential
optimisation of first timetabling and then platforming and routing. Therefore,
first, for some critical areas, the simultaneous optimisation of Thijs could be
tried. Then the total country-level timetabling problem could be tackled, with
added boundary conditions imposing the earlier found local solutions at the
boundaries of these critical areas. Of course, when several critical areas all
impose boundary conditions, it is possible that these boundary conditions
cannot be simultaneously satisfied. Finding out how to avoid this would require
further research.

http://www.sciencedirect.com/science/article/pii/S0377221713008916
http://www.sciencedirect.com/science/article/pii/S0377221713008916




Chapter 6

Conclusions and Further
Work

“A world without problems is an illusion,

so is a world without solutions.”

– From “Puzzillusions’ , by Gianni A. Sarcone

In section 6.1, we make a summary of the main results we obtained and how
these are useful to Infrabel and train passengers. Of course, as always, more
can be done and we make suggestions for future work in section 6.2.

6.1 Conclusions

We conclude by presenting the main results we achieved during this PhD.
Subsequently, we want to recommend some practices to railway companies. We
then give suggestions for further improvement of our work.
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6.1.1 Results

From ticket sales data, we were able to derive local passenger numbers on all
trains in all locations in the train network by implementing a routing algorithm.
Thanks to parallellising this algorithm over all cores and over several machines in
the network, we can perform this routing task arbitrarily quickly. The results of
this algorithm are later used in our timetabling approach. We then managed to
construct workable timetabling and platforming processes that are both quicker
than the current manual ones at Infrabel and also both result in higher quality
plans. As for timetabling, compared to the state of the art in Periodic Event
Scheduling Problems (PESP) research before, we can claim that we are the first
to add a complete objective function that controls all timing supplements in the
whole macroscopic timetable. We are also the first to produce a timetable for
an entire country from a PESP model that includes such a complete objective
function. In fact we did this for both all 196 Belgian hourly passenger trains
as for all 88 Danish hourly passenger trains. As for platforming, we created
a model that platforms typical train traffic of a three hour window in 0.25
seconds per Belgian station on average. This is also quicker than previous
research reports on similar problems. We also produce a cumulative report for
all stations that compares key performance indicators of the current platform
plan and the optimised platform plan. Over all stations, this report shows that
the number of platformed trains is almost identical but that the robustness of
the optimised platform plans is much better.

Both timetabling and platforming systems are implemented, integrated and
usable at Infrabel. The resulting better plans should also result in operational
benefits. Beneficial effects of the generated macroscopic timetable should be
especially noticeable to passengers, who will experience quicker effective end-
to-end connections and less missed transfers. According to the rules used at
Infrabel on a macroscopic level, the platforming plans have no train platforming
nor routing conflicts anymore and this will lead to less real time delays in
practice in stations. This will also be beneficial to passengers.

Since it is the first time that a macroscopic train timetable has been generated
for an entire country, or two, now is the time that railway companies can consider
the use of our approach and its generated timetables. Since our approach also
predicts a significant reduction of passenger time in practice, 3.8% for Belgium
and 2.9% for Denmark, as well as probabilities on missed transfers dropping
from more than 10% to less than 3%, now is also the time that they should.
Today, passengers often complain about ’unnecessary’ long travel times, frequent
delays and missed connections. Adopting a method that reduces all of these
phenomena, where perception is reality, can only be to the passenger’s benefit
and will reduce their complaints. Their increased satisfaction and associated
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increased willingness to pay for a better train service can only trickle down and
be translated into beneficial effects for the train operator companies and then
further for Infrabel.

6.1.2 Recommendations to Railway Companies

During our 6 years of our consulting job at Infrabel, we noticed that some
processes could be improved. All three recommendations would have very large
positive impact on operations. The first two are very easy to implement. The
last one is harder, but tools to do this are now both developped and integrated
at Infrabel and this thesis fully explains the rationale down to the details of
this process.

Record and Keep Ticket Sales Data at the Station Level

For a train operator, it is very important to record and keep passenger demand
data for various reasons. As shown in chapter 2, for timetabling the ticket
sales data serve as input data to calculate the number of passengers on trains.
We concluded that it is best to keep record of ticket sales data at the station
to station level, rather than at the coarser, less accurate zone to zone level.
This data should be kept as a non-symmetric origin-destination (OD) matrix.
Morning and evening OD-matrices can be added together for some purposes,
but the original matrices should be kept as recorded.

Improve Cooperation between Train Operator and Infrastructure Manager

From within Infrabel, it has been impossible to obtain recent ticket sales data
(OD-matrix) from our main operator, NMBS. While we understand that this is
sensitive information, we think it should be possible for an operator to trust that
the infrastructure manager will not pass this information to third parties. If this
information is not received by the railway infrastructure company, it becomes
impossible for them to optimise the planning towards what is important for
their customer, the operator. So it is in the train operator’s benefit to pass this
information.

The infrastructure company is the party responsible for the final integrated
timetable. The infrastructure company is the only party that can possess the
OD information of all its clients and combine (add) them. Consequently, it
is the only party that can perform the global optimisation for all its clients



230 CONCLUSIONS AND FURTHER WORK

together for the greater good of all. This includes consideration of passenger
transfers between trains of two different clients.

Embrace Optimisation instead of Only Simulation

Currently, Infrabel constructs timetables manually and then simulates the
previous timetable and the new timetable and compares punctuality results
between both. In some areas, the new timetable will be better than the previous
one while in other areas the opposite will be true. This is useful information
to predict what will happen in reality. However, more useful questions are: (i)
“How to improve the timetable in the areas that are worse off?” and (ii) “How
to improve the timetable in the areas that are worse off, without losing the
improvement made in the better off areas?”. These questions trigger the next
question (iii) “What does ’better’ mean?”. To answer this, one needs to answer
the question: “What is the objective of a timetable?”. Simulation can never
give an answer to the questions of type (i), (ii). Indeed, simulation is a ’forward
process’ and gives no answers to ’backwards’ questions like “If I want to reach
or maximise or minimise (so ’optimise’) my objective, how do I need to change
the control parameters?”. To answer this, and to answer all questions of type (i),
(ii) and (iii) mentioned above, one needs optimisation and one needs to clearly
specify an objective (function). This is exactly what we did in this thesis and
we highly recommend railway companies to follow the optimisation paradigm.
Simulation alone will require a lot of trial and error and human effort for a
medium quality result. Optimisation will lead to higher improvement according
to a clearly defined objective and it will do so in a fraction of the time and
with a fraction of the human effort. The results mentioned in section 6.1.1 are
a clear proof of this.



USEFUL FURTHER WORK 231

6.2 Useful Further Work

The platforming problem, as defined by Infrabel, with fixed arrival and departure
times, we consider as mainly solved. For timetabling, and also its integration
with platforming, some further work is certainly interesting. We mention some
points of possible improvements in sections 6.2.1 to 6.2.8.

6.2.1 Improvement of Input Data

“In God we trust, all others bring data.”

– from“The Elements of Statistical Learning”

– by Trevor Hastie, Robert Tibshirani and Jerome Friedman

The ticket sales data we used dates from 2002. New numbers could not be
obtained from NMBS. If one supposes that the relative increase of passenger
demand from 2002 to now is the same for all origin-destination pairs, they
will not affect the timetable that is generated. However, any inhomogeneous
increase in demand will have an effect on the produced optimised timetable. It
is therefore highly preferrable to have recent, dependable input data.

Currently, we still suppose the same type and scale of primary delay distributions
for all trains and all network locations and on all activities; ride, dwell and
transfers. More specifically, we assume that the average of the negative
exponential primary delays of an activity amounts to a% of the minimum
of that activity. For ride activities this minimum includes a 5% markup on
the calculated minimum run time. We typically assumed this a% to be in
the range from 2% to 5%. In practice, the value of a% could vary per train
and per location. So, we could tune the primary delay distributions imposed
during optimisation to the delay distributions we measure in practice with the
timetable in operation. This seems more realistic. Note that one must also be
cautious with this method because the measured delays may for some part be
dependent on on the timetable itself.

6.2.2 Further Reduction of the MIP Gap

Given all assumptions mentioned in the papers, the timetables we produced for
Belgium and Denmark are respectively 3.8% and 2.9% better than the original
timetable in terms of the objective function. These are both solutions of the
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MIP models that correspond to MIP gaps of more than 70%. A MIP gap of x%
means that the solver has mathematically proven that the optimal solution is
at most x% better in terms of the objective function that the solution currently
found. It does not guarantee that a solution with a gap smaller than x% exists.
When we give the solver more time, sometimes the MIP gap decreases very
little after a few additional hours or days. We do not think that solutions that
are 70% better really exist, but it is clear that the solver is unable to quickly
decrease the MIP gap. We do not know the reason for this slowness. With
smaller train networks as well as with bigger assumed primary delays (bigger
values of ’a%’), lower values of MIP gaps are more quickly reached.

Since we think our objective function is what it must be for passengers, only
methods of cleverly restricting the search space without excluding too many
good solutions would be the measures to take. Since, with primary delay
distributions that have a larger average (a%), solutions with a lower MIP gap
are more quickly reached, one could first try to find a solution with a very large
a% and then use it as an initial solution of the model as generated with the real
value for a%. Maybe also other specific cycle constraints could help, for example
cycles connecting alternative trains. Fixing certain orders for alternative trains
could also potentially help speed up computation without losing feasibility or
much of the optimality.

6.2.3 Addition of Boundary Conditions

Currently, the timetable is computed supposing that there are no constraints
on when trains enter or leave the country. In practice, neighbouring countries
have meetings, prior to changing their timetables, where they agree on time
windows for all trains that pass boundaries between their countries. To provide
for this in our timetabling tool, these boundary conditions could be added
as additional constraints to the model. Thanks to the flexibility of Integer
Linear Programming, this can be done without having to change the current
constraints nor the objective function in the current model. Of course, added
boundary conditions may increase or decrease the computation time. Inside the
country under consideration, similar boundary conditions can also be added for
sub-areas that may have a prefixed solution that was computed with another
method. Likewise, boundary conditions may be needed to specify when bridges
open or close at waterways. If many boundary conditions are specified, it is
possible that the model becomes infeasible. In fact, it is of course good to know
in advance when this is the case, since it means that a timetable with these
requirements cannot be found. The boundary conditions will then have to be
relaxed until the model becomes feasible.
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6.2.4 Scalable Optimisation of Temporal Spreading of Alter-
native Trains

The excess journey time component of the total journey time of passengers
is equivalent to the time passengers wait for their train at their station of
departure plus the time they wait for the next mode of transport at their station
of arrival. When we add this excess journey time to the objective function of
our optimisation, the optimisation process becomes much slower. In fact, up to
now, the largest train network we can solve with this feature enabled is one with
26 hourly trains. With more trains, computation times became impractically
large. For the whole of Belgium, we need 196 hourly trains. So, more research
is required to make handling this excess journey time in the objective function
more efficient.

6.2.5 Further Reduction of the Expected Transfer Time
Component

From the original timetable to the automatically generated optimised timetable,
we typically reduce the total expected passenger travel time by some percentages
like 3.8% or 2.9%. However the expected transfer component of these total
times still increases from the original to the optimised timetable. Preferably,
this component by itself should also be reduced, ideally without losing the
decrease of total expected passenger time we already obtained or even further
reducing it. Indeed, one wants short transfer times in practice, but not so short
that they have a high chance of being missed. Some preliminary ideas on how to
obtain this are requiring that important transfers take less than 10 minutes or
take about the same time as in the original timetable. So rather than changing
the objective function. this would restrict the search space. Another idea is to
apply hard-soft spreading of trains on major corridors. As discussed in section
2.6, this method was beneficial for the reduction of excess journey time, but also
seemed to have the side effect of restricting the increase of expected transfer
time. Unfortunately, as mentioned in section 6.2.4, large networks still take too
much computation time for optimisations with this extended objective function.
Trying out these ideas would require further experiments.

6.2.6 Execute Multiple Reflowing and Retiming Iterations

We optimise a timetable by first flowing passengers over the network of trains in
our graph model as they would choose their trains in reality. We then know an
estimate for local passenger numbers on every train. Next, with these numbers
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fixed, we adapt the train arrival and departure times to minimise the total
expected passenger journey time in practice. We arrive at a new timetable,
which, when put in practice, would lead to some passengers again choosing a
new route. This means that the first phase of reflowing passengers would have
to be carried out again, and then the next retiming phase could be carried out.
We should reiterate until passenger time does not decrease anymore before we
put a timetable into practice.

6.2.7 Coupling of Timetabling and Platforming

Our platforming tool can currently automatically platform and route a maximum
possible number of trains in all stations for the current timetable as it is present
in the Infrabel databases. We could also perform platforming and routing for
all stations for the automatically generated new timetable if these tools would
be connected. This has not been done yet. It is a matter of additional coding
rather than extra research work.

When timetabling and platforming are coupled up, the issue arises of how
to resolve the situation of a station where not all trains can be platformed.
The arrival or/and departure times of unplaced trains or/and trains hindering
unplaced trains can be slightly shifted in time. To properly organise this and
certainly when wanting to construct a system that can guarantee to always
find a solution for this, information needs to be passed from the platforming
to the timetabling tool and back again. We currently have no such system in
place. Recently, research tools came into being, that are able to do this during
multiple iterations between the macro timetabling level and micro platforming
and routing level and have been demonstrated to work for smaller areas [9, 6, 1].
These approaches could also work for larger areas or could at least be a source
of inspiration.

When connecting our timetabling tool to our platforming tool, the opportunity
arises to pass along the number of passengers on trains entering and leaving
a station. This information could be used in the objective function of the
platforming model. As such preference could be given to platform and route
important trains over less important trains. Additionally, the number of
passengers on all transfers in the station could be passed to the platforming
tool and the platformer could try to place train couples on nearby platform
tracks when many people transfer between these trains. Currently all trains are
still considered to have the same importance and transfers do not play a role in
platform selection.



USEFUL FURTHER WORK 235

6.2.8 Further Cooperation on Timetabling

We are interested in further cooperation with rail companies like Infrabel or/and
NMBS. We believe we have an approach to timetabling that will benefit them.
Our approach is automated, which will save them planning time and effort.
We have also shown that with our timetable, thanks to its better allocation of
time supplements, passengers will save 3.8% of passenger time for Belgian case.
Apart from that, our method is also guaranteed to produce timetables without
run time violations and without train conflicts, which will save trains and their
passengers even more travel time. Our simulations of both the original and
the optimised timetables with independent commercial tools confirm that train
punctuality would also significantly increase.
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