Peter Sels^{1,2,3}, Thijs Dewilde¹, Dirk Cattrysse¹, Pieter Vansteenwegen¹

¹KU Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium

²Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> ³Infrabel, Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

> > March 23, 2015

Table of Contents

- Business Problem
- 2 Model
 - Objective function
 - Variability
 - Definitions
 - Constraints
- 3 Software Implementation
 - User Interface
 - Solver running times
- 4 Results
 - Antwerp-Central Original
 - Antwerp-Central Optimised, Non-Periodic
 - Antwerp-Central Optimised, Periodic
 - Antwerp-Central Both, Non-Periodic
 - Ghent Sint-Pieters Original
 - Ghent Sint-Pieters Optimised, Non-Periodic

- Ghent Sint-Pieters Both, Non-Periodic
- Comparative Overview
- 5 Conclusions & Future Work

Belgian Infrastructure Management Company: Infrabel:

"Train Platforming Problem (TPP): platform and route as many trains as possible"

Objectives:

no conflicts in planning in stations, check robustness

Fixed:

infrastructure, train lines, halting pattern, arrival & departure times

Specifics:

- one busy day, morning peak hours, periodic/non-periodic
- (check current platforming +) create new ('optimised') one

Platforming = Mapping Trains on Infrastructure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

Objective function

In objective function

In objective function:

- Minimize penalties
 - of assigning to fictive a platform and
 - of moving assignment from preferred (real) to non-preferred (real) platforms,

for both initial O_{INI} and for supplementary O_{SUP} train sets

$$g(op_{o,p}) = \sum_{o \in O_{INI}} CF_{INI} \cdot f_o + CR_{INI} \cdot cr_o + \sum_{o \in O_{SUP}} CF_{SUP} \cdot f_o + CR_{SUP} \cdot cr_o.$$
(1)

where

$$\forall o \in O : f_o \equiv (o2p_{o,p} = pFICT) \\ \forall o \in O : cr_o \equiv (o2p_{o,p} \neq pORIG_o)$$

- uses fictive platform at a higher cost than real platform
- conservative optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (8, 4, 2, 1)$
- progressive optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (1, 1, 0, 0)$

Model

Objective function

Not in objective function

Not in objective function:

- weighting of trains by importance (e.g.:#passengers)
- important (e.g.:#passengers) transfer concerns, placing two trains close together

robustness against delays

Model

Variability

Definitions: Movement & Occupation

Movement Definition:

- Train 'IN/OUT movement' specifies:
 - IN/OUT line
 - platform arrival time
 - platform departure time
- IN route: connects IN line to platform,
- OUT route: connects platform to OUT line.

Occupation Definition:

- platform 'occupation' specifies (bundles):
 - (list of) IN movement(s)
 - (list of) OUT movement(s)
 - e.g.: 1 IN movement, 2 OUT movements = train split
 - e.g.: 2 IN movements, 1 OUT movement = train merge

Model

Variability

In / Not In Variability

In Variability:

- per occupation
 - one platform choice
- per movement
 - one route choice
 - (indirectly) one platform choice

Not in Variability:

• per line-platform combination: only 1 default routing allowed for now

only fixed platform arrival/departure times

Model

Constraints

Constraints Requiring total Assignment

Per-Movement, Per-Occupation and Compatibility Constraints:

• For each occupation, exactly one platform has to be chosen:

$$\forall o \in O : \sum_{p \in P} op_{o,p} = 1$$
(2)

• For each movement, exactly one route has to be chosen:

$$\forall o \in O : \forall m \in M_o : \sum_{r \in R} mr_{o,m,r} = 1$$
(3)

• all movements in 1 occupation need to come together on 1 platform track

$$\forall o \in O : \forall m \in M_o : mr_{o,m,r} \implies op_{m2o_m,r2p_r}$$
(4)

- via m2om function, movement-occupation membership is respected
- via r2pr function, route-platform connectivity is respected

Model

Constraints

Constraints Avoiding Conflicts

Inter-Occupation Constraints:

• no 2 extended occupations use equal platform tracks at any time

$$\forall \begin{array}{c} o_{0} \prec o_{1} \\ [otLoLbC_{o_{0}}, otHiUbC_{o_{0}}) \cap \\ [otLoLbC_{o_{1}}, otHiUbC_{o_{1}}) \neq \phi : \end{array} \\ op_{o_{0}, \rho_{0}} \land op_{o_{1}, \rho_{1}} \Longrightarrow osep_{o_{0}, o_{1}} \end{cases}$$

$$(5)$$

Inter-Movement Constraints:

• no 2 extended movements use *dependent* (equal or crossing) routings at any time

$$\forall \begin{array}{c} m_{0} \prec m_{1} \\ [mtLoLbC_{m_{0}}, mtHiUbC_{m_{0}}) \cap \\ [mtLoLbC_{m_{1}}, mtHiUbC_{m_{1}}) \neq \phi : \end{array} \\ mr_{o_{0}, m_{0}, r_{0}} \wedge mr_{o_{1}, m_{1}, r_{1}} \Longrightarrow msep_{m_{0}, m_{1}} \end{array}$$

$$(6)$$

・ロト ・ 雪 ト ・ ヨ ト

ж

Model

Constraints

Ρ

Separation boolean definitions

Occupation Separation boolean definition:

Movement separation boolean definition:

 $\forall \begin{array}{c} m_0 \prec m_1 \\ [mtLoLbC_{m_0}, mtHiUbC_{m_0}) \cap \\ [mtLoLbC_{m_1}, mtHiUbC_{m_1}) \neq \phi : \end{array}$

 $m_0, m_1 \in M$:

$$\begin{split} mbef_{m_{0},m_{1}} &\equiv (mtHiV_{o_{0}} + dt_{S} \leq mtLoV_{m_{1}}) \\ mbef_{m_{1},m_{0}} &\equiv (mtHiV_{o_{1}} + dt_{S} \leq mtLoV_{m_{0}}) \\ msep_{m_{0},m_{1}} &\equiv (mbef_{m_{0},m_{1}} \lor mbef_{m_{1},m_{0}}), \end{split}$$
(8)

Software Implementation

User Interface

User Interface Parameters

leopardGUI: LEan Optimiser of Platforms And Ro	utings including routing Dependencies	- • • ×
Date	16/04/2013 👻	
From Hour	07:10	
Up To Hour	08:50 Select the start hour for which you want to ru	n Leopard.
Extract Macro Infrastructure From	a371 •	
Select Station	BRUGGE[210]	
Fix Station Movements	fix •	
if in original plan: same relation, same platform track then enforce in optimised plan: same platform track too	if = real orig. platform tracks if = fictive orig. platform tracks	
Mirror unmatched movements by turn-around time	5,0	
Avoid routing conflicts also for Mirrored movements		No.
Fixed train length in meter (-1 for actual length)	400	
Draw Long Text for Movements		
Mark and name times in occupations		
Warn for (Real, Real)-dependent Route low reuse times	Verlap Too dose Quite dose Robust	
Define warning level Upper Times (min)	0,0 1,0 🙀 2,0 🖈 5,0 🔹	
Warn for (Real,Fictive)-Route time overlaps	Potential conflict	
Popup Platforming Plan for	☑ Original ☑ Optimised	About
FINAL Station Connectivity that Luks Routes will be chec incOrDecKm,io,L_jd,L_nm,LST_jdc,LST_track_dir,LST_nm de Incl_fourt_503_50A1_1_511_A_140_1022_1_1_210_RBUGG	ked against and rejected against in case of no match. LST_vMax,LS_jdc,LS_side,P1P2_orient,P1_jd,P1_nm,P1_sym_nm,P2_jd,P2_ E FR_6N9_1488FKF_IFCR1_2	nm,P2_sym_nm,LS_StSi
[inc], [in], 503, [504], 7, [2], 8, 140, 598, 2, 1, 152, (NOOST) [inc], [in], 503, [504], 2, [2], 8, 140, 1022, 1, 1, 210, RNGG [inc], [in], 503, [504], 2, [2], 8, 140, 1022, 1, 1, 210, RNGG [inc], [in], 503, [504], 2, [2], 8, 140, 598, 2, 1, 1596, NOOST)	H N (900) 200,200,800 (200,FR, 1 E,FR,609,)ABBEKE,[FGB],2 AMP,[YFPO],210,8RUGGE,FK,1 E DEPET 210,8RUGGE,FK,1 E DEPET 210,8RUGGE,FK,1	

Software Implementation Solver running times

Solver running times

Table: Solver running times on a Xeon CPU E31240 Quad Core 3.3 GHz, comparing CPLEX v12.5.0.0 32 bit, XPRESS BCL v4.6.1 64 bit and Gurobi v5.6.3 64 bit

							# Stations			
Solver		# Stations Optimally Solved in								
							Solved in			
	$< 1 \mathrm{s}$	$< 10 \mathrm{s}$	< 20 s	< 30s	< 50 s	$< 130 \mathrm{s}$	\geq 7200s			
CPLEX	526	8	0	0	1	1	0			
XPRESS	528	5	1	1	0	0	1			
Gurobi	533	3	0	0	0	0	0			

Results

Antwerp-Central Original

Original Assignment

Figure: Antwerp-Central original Assignment: 3 levels, some conflicts

Results

Antwerp-Central Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Antwerp-Central Opt. assignment, non-periodic: no conflicts, some unplaced trains

Results

Antwerp-Central Optimised, Periodic

Optimised Assignment, Periodic

Figure: Antwerp-Central Opt. assignment, periodic: no conflicts, some unplaced trains

Results

Antwerp-Central Both, Non-Periodic

Both Assignments, Non-Periodic

Figure: Antwerp-Central: comparing original and optimised assignments

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Results

Antwerp-Central Both, Non-Periodic

Antwerp Station

Figure: Antwerp Station

Results

Ghent Sint-Pieters Original

Original Assignment

Figure: Ghent Sint-Pieters original Assignment: some conflicts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

Ghent Sint-Pieters Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Ghent Sint-Pieters Opt. assignment, non-periodic: no conflicts, some unplaced trains

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

Ghent Sint-Pieters Both, Non-Periodic

Both Assignments, Non-Periodic

Figure: Ghent Sint-Pieters: comparing original and optimised assignments

Results

Ghent Sint-Pieters Both, Non-Periodic

Ghent Station

Figure: Ghent Station

・ロト ・ 四ト ・ モト ・ モト

э

Results

Comparative Overview

Comparing Original and Optimised Assignment KPIs

#platform #UnplatformedOrig Orig

kOra #ightOrar #greenLinr RobustnessSc #platformed(#UnplatformedOpt Opt

#redLit #darkOra #lightOrar #greenLini RobustnessSot Both

20	0	Orig Plan 401	0	0	0	0	0	20	0 Opt Plan 401	0	0	0	0	0	Both Plan 401
23	0	Orig Plan 402	33	8	8	13	-337	17	6 Opt Plan 402	0	7	3	9	-31	Both Plan 402
9	0	Orig Plan 404	0	0	0	0	0	9	0 Opt Plan 404	0	0	0	0	0	Both Plan 404
10	0	Orig Plan 405	0	0	0	0	0	10	0 Opt Plan 405	0	0	0	0	0	Both Plan 405
23	0	Orig Plan 406	0	0	0	5	0	23	0 Opt Plan 406	0	2	1	9	-9	Both Plan 406
9	0	Orig Plan 409	0	0	0	0	0	9	0 Opt Plan 409	0	0	0	0	0	Both Plan 409
13	0	Orig Plan 412	0	0	0	0	0	13	0 Opt Plan 412	0	0	0	0	0	Both Plan 412
21	0	Orig Plan 413	0	0	1	4	-1	21	0 Opt Plan 413	0	0	1	4	-1	Both Plan 413
28	0	Orig Plan 414	0	0	2	5	-2	28	0 Opt Plan 414	0	0	2	5	-2	Both Plan 414
46	0	Orig Plan 415	0	8	20	18	-52	46	0 Opt Plan 415	0	8	20	18	-52	Both Plan 415
14	0	Orig Plan 418	0	0	0	0	0	14	0 Opt Plan 418	0	0	0	0	0	Both Plan 418
17	0	Orig Plan 421	0	0	0	0	0	17	0 Opt Plan 421	0	0	0	0	0	Both Plan 421
15	0	Orig Plan 422	0	0	0	1	0	15	0 Opt Plan 422	0	0	0	1	0	Both Plan 422
7	0	Orig Plan 423	0	0	0	0	0	7	0 Opt Plan 423	0	0	0	0	0	Both Plan 423
24	0	Orig Plan 424	0	1	2	1	-6	24	0 Opt Plan 424	0	1	2	1	-6	Both Plan 424
23	1	Orig Plan 427	0	0	0	- 4	0	24	0 Opt Plan 427	0	0	0	- 4	0	Both Plan 427
0	12	Orig Plan 432	0	0	0	0	0	12	0 Opt Plan 432	0	0	0	0	0	Both Plan 432
14	0	Orig Plan 433	0	0	0	0	0	14	0 Opt Plan 433	0	0	0	0	0	Both Plan 433
11	0	Orig Plan 434	0	0	0	0	0	11	0 Opt Plan 434	0	0	0	0	0	Both Plan 434
10	0	Orig Plan 435	0	0	0	0	0	10	0 Opt Plan 435	0	0	0	0	0	Both Plan 435
12	0	Orig Plan 436	0	0	0	0	0	12	0 Opt Plan 436	0	0	0	0	0	Both Plan 436
34	0	Orig Plan 438	1	- 4	10	8	-35	33	1 Opt Plan 438	0	5	5	11	-25	Both Plan 438
9	0	Orig Plan 442	0	0	0	0	0	9	0 Opt Plan 442	0	0	0	0	0	Both Plan 442
15	0	Orig Plan 446	0	1	2	1	-6	15	0 Opt Plan 446	0	1	2	1	-6	Both Plan 446
33	0	Orig Plan 447	0	0	0	9	0	33	0 Opt Plan 447	0	0	0	9	0	Both Plan 447
33	1	Orig Plan 449	0	0	0	1	0	34	0 Opt Plan 449	0	0	0	2	0	Both Plan 449
87	7	Orig Plan 455	16	13	20	17	-216	92	2 Opt Plan 455	0	14	17	16	-73	Both Plan 455
36	0	Orig Plan 457	0	2	5	9	-13	36	0 Opt Plan 457	0	2	5	9	-13	Both Plan 457
34	1	Orio Plan 458	2	1	7	6	-38	34	Ont Plan 458	0	4	7	6	-23	Both Plan 458

12281	613	399	752	1524	2245	-8123	12641	253	0	707	1578	2409	-4406		
	hi=red=work to do	hi=bad	hi=bad	hi=bad	hi=bad	low=bad		hi=red=work to do		hi=bad	hi=bad	hi=bad	lo=bad		
		lo=good	lo=good	lo=good	lo=good	hi=good				lo=good	lo=good	lo=good	hi=good		
	12894							12894							
	Sum							Sum							
	4,75%							1,96%							
	% Unplatformed							% Unplatformed							
	95,25%							98,04%							
	% Platformed							% Platformed							
														-	-
									 P	< mil 1	F 4 .	- •			$-\psi$

Results

Comparative Overview

TPP Research and Integration

	inte	grated:
publication	company	in tool(s)
[Zwaneveld et al.(1996)Zwaneveld, Kroon, Romeijn, Salomon, Dauzère-Perès, Van Hoesel, and Ambergen]	ProRail	CTATIONS
[Zwaneveld(1997)]	NL	STATIONS
[De Luca Cardillo(1998)]		
[Delerme and Redriguer(2001)]	SNCE	RECIFE
[Delottie and Kounguez(2001)]	31401	FR
[Billionnet(2003)]		
[Carey and Cantille(2002)]	British	
	Rail, UK	
[Caprara et al.(2011)Caprara, Galli, and Toth]	RFI, IT	
[Lusby et al.(2011)Lusby, Larsen, Ryan, and Ehrgott]		
[Sels et al (2014)Sels, Dewilde, Catterises, and Vansteenworgen]	Infrabel	Ocapi
[Jeis et al.(2014)Jeis, Dewilde, Cattiysse, and Valisteenwegen]	BE	Leopard

Table: Comparing TPP Research & Integration

Conclusions & Future Work

Conclusions

- Leopard usable as check of current platform assignment
 - indicates all conflicts
 - indicates all robustness issues
- Leopard usable as generator of correct platform assignment
 - guarantees no conflicts
 - can have robustness issues, indicates them
- fast as a Leopard
- Further Work
 - roll-out with Infrabel planners
 - avoid robustness issues
 - weight trains per # passengers
 - allow some variability of platform times
 - allow multiple routes per line-platform combination

Automatically and Quickly Planning Platform and Route of Trains in Railway Stations Conclusions & Future Work

- Questions?
- sels.peter@gmail.com
- www.LogicallyYours.com/Research/
- www.LogicallyYours.com/Company/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Billionnet, A., 2003. Using Integer Programming to Solve the Train Platforming Problem. Transportation Science 37 (1), 213–222.
- Caprara, A., Galli, L., Toth, P., 2011. Solution of the train platforming problem. Transportation Science 45 (2), 246–257.
- Carev, M., Carville, S., 2003. Scheduling and platforming trains at busy complex stations. Transportation Research, Part A 37 (1), 195 - 224.
- De Luca Cardillo, D., 1998. k L-List τ Colouring of Graphs. European Journal of Operational Research 106 (1), 160–164.

Delorme, X., Rodriguez, J., 2001. Heuristics for railway infrastructure saturation. Electronics Notes in Theoretical Computer Science 50 (1), 39-53.

Lusby, R. M., Larsen, J., Ryan, D., Ehrgott, M., 2011. Routing Trains Through Railway Junctions: A New Set-packing Approach. Transportation Science 45 (1), 228–245.

- Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., 2014. The Train Platforming Problem: The Infrastructure Management Company Perspective. Transportation Research Part B 61, 55–72.
- Zwaneveld, P. J., 1997. Railway Planning and Allocation of Passenger Lines. Ph.D. thesis, Rotterdam School of Management.

Zwaneveld, P. J., Kroon, L., Romeijn, H., Salomon, M., Dauzère-Perès, S., Van Hoesel, S. P. M., Ambergen, H. W., 1996. Routing Trains Through Railway Stations: Model Formulation and Algorithms. Transportation Science 30 (1), 181–194.