Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Peter Sels ${ }^{1,2,3}$, Thijs Dewilde ${ }^{1}$, Dirk Cattrysse ${ }^{1}$, Pieter Vansteenwegen ${ }^{1}$
${ }^{1}$ KU Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium
${ }^{2}$ Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author
${ }^{3}$ Infrabel, Traffic Management \& Services, Fonsnylaan 13, 1060 Brussels, Belgium

March 23, 2015

Table of Contents

(1) Business Problem
(2) Model

- Objective function
- Variability
- Definitions
- Constraints
(3) Software Implementation
- User Interface
- Solver running times

4 Results

- Antwerp-Central Original
- Antwerp-Central Optimised, Non-Periodic
- Antwerp-Central Optimised, Periodic
- Antwerp-Central Both, Non-Periodic
- Ghent Sint-Pieters Original
- Ghent Sint-Pieters Optimised, Non-Periodic
- Ghent Sint-Pieters Both, Non-Periodic
- Comparative Overview
(5) Conclusions \& Future Work

Task

Belgian Infrastructure Management Company: Infrabel:
"Train Platforming Problem (TPP): platform and route as many trains as possible"

Objectives:

no conflicts in planning in stations, check robustness

Fixed:

infrastructure, train lines, halting pattern, arrival \& departure times

Specifics:

- one busy day, morning peak hours, periodic/non-periodic
- (check current platforming +) create new ('optimised') one

Platforming $=$ Mapping Trains on Infrastructure

In objective function

In objective function:

- Minimize penalties
- of assigning to fictive a platform and
- of moving assignment from preferred (real) to non-preferred (real) platforms,
for both initial $O_{I N I}$ and for supplementary $O_{\text {SUP }}$ train sets

$$
\begin{align*}
g\left(o p_{o, p}\right) & =\sum_{o \in O_{I N I}} C F_{I N I} \cdot f_{o}+C R_{I N I} \cdot c r_{o} \tag{1}\\
& +\sum_{o \in O_{S U P}} C F_{S U P} \cdot f_{o}+C R_{S U P} \cdot c r_{o}
\end{align*}
$$

where

$$
\begin{aligned}
& \forall o \in O: f_{o} \equiv\left(o 2 p_{o, p}=p F I C T\right) \\
& \forall o \in O: c r_{o} \equiv\left(o 2 p_{o, p} \neq p O R I G_{o}\right)
\end{aligned}
$$

- uses fictive platform at a higher cost than real platform
- conservative optimisation $\left(C F_{I N I}, C F_{S U P}, C R_{I N I}, C R_{S U P}\right)=(8,4,2,1)$
- progressive optimisation $\left(C F_{I N I}, C F_{S U P}, C R_{I N I}, C R_{S U P}\right)=(1,1,0,0)$

Not in objective function

Not in objective function:

- weighting of trains by importance (e.g.:\#passengers)
- important (e.g.:\#passengers) transfer concerns, placing two trains close together
- robustness against delays

Definitions: Movement \& Occupation

Movement Definition:

- Train 'IN/OUT movement' specifies:
- IN/OUT line
- platform arrival time
- platform departure time
- IN route: connects IN line to platform,
- OUT route: connects platform to OUT line.

Occupation Definition:

- platform 'occupation' specifies (bundles):
- (list of) IN movement(s)
- (list of) OUT movement(s)
- e.g.: 1 IN movement, 2 OUT movements = train split
- e.g.: 2 IN movements, 1 OUT movement $=$ train merge

In / Not In Variability

In Variability:

- per occupation
- one platform choice
- per movement
- one route choice
- (indirectly) one platform choice

Not in Variability:

- per line-platform combination: only 1 default routing allowed for now
- only fixed platform arrival/departure times

Constraints Requiring total Assignment

Per-Movement, Per-Occupation and Compatibility Constraints:

- For each occupation, exactly one platform has to be chosen:

$$
\begin{equation*}
\forall o \in O: \sum_{p \in P} o p_{o, p}=1 \tag{2}
\end{equation*}
$$

- For each movement, exactly one route has to be chosen:

$$
\begin{equation*}
\forall o \in O: \forall m \in M_{o}: \sum_{r \in R} m r_{o, m, r}=1 \tag{3}
\end{equation*}
$$

- all movements in 1 occupation need to come together on 1 platform track

$$
\begin{equation*}
\forall o \in O: \forall m \in M_{o}: m r_{o, m, r} \Longrightarrow o p_{m 2 o_{m}, r 2 p_{r}} \tag{4}
\end{equation*}
$$

- via $m 2 o_{m}$ function, movement-occupation membership is respected
- via $r 2 p_{r}$ function, route-platform connectivity is respected

Constraints Avoiding Conflicts

Inter-Occupation Constraints:

- no 2 extended occupations use equal platform tracks at any time

$$
\forall \underset{\left[o t L o L b C_{\left.0_{0}, \text { otHiUb } C_{o_{0}}\right) \cap}^{o_{0}<o_{1}} \quad o_{0}, o_{1} \in O: \forall_{p_{0}=p_{1}}\left(p_{0}, p_{1}\right) \in\left(P_{o_{0}}, P_{o_{1}}\right): ~\right.}{\text { and }}
$$ $\left[\right.$ otLoLbC $\left.C_{o_{1}}, o t H i U b C_{o_{1}}\right) \neq \phi$:

$$
o p_{o_{0}, p_{0}} \wedge o p_{o_{1}, p_{1}} \Longrightarrow \operatorname{osep}_{o_{0}, o_{1}}
$$

Inter-Movement Constraints:

- no 2 extended movements use dependent (equal or crossing) routings at any time

$$
\begin{aligned}
& \forall \underset{\left[m t L o L b C_{m_{0}}, m t H i U b C_{m_{0}}\right) \cap}{m_{0} \prec m_{1}} \quad m_{0}, m_{1} \in M: \forall_{\text {dep }_{r_{0}, r_{1}}}\left(r_{0}, r_{1}\right) \in\left(R_{m_{0}}, R_{m_{1}}\right): \\
& {\left[m t L_{L b} C_{m_{1}}, m t H i U b C_{m_{1}}\right) \neq \phi:} \\
& m r_{o_{0}, m_{0}, r_{0}} \wedge m r_{o_{1}, m_{1}, r_{1}} \Longrightarrow m s e p_{m_{0}, m_{1}}
\end{aligned}
$$

Separation boolean definitions

Occupation Separation boolean definition:

$$
\begin{align*}
& \forall \quad o_{0}, o_{1} \in O \text { : } \\
& {\left[o t L o L b C_{o_{0}}, o t H i U b C_{o_{0}}\right) \cap} \\
& {\left[\text { otLoLb } C_{o_{1}}, o t H i U b C_{o_{1}}\right) \neq \phi} \\
& \text { obef }_{o_{0}, o_{1}} \equiv\left(\text { otHiV }_{o_{0}}+d t_{S} \leq \text { otLoV } V_{o_{1}}\right) \tag{7}\\
& \text { obef }_{o_{1}, o_{0}} \equiv\left(\text { otHiV }_{o_{1}}+d t_{s} \leq o t L o V_{o_{0}}\right) \\
& \text { osep }_{o_{0}, o_{1}} \equiv\left(\text { obef }_{o_{0}, o_{1}} \vee \text { obef }_{o_{1}, o_{0}}\right) \text {. }
\end{align*}
$$

Movement separation boolean definition:

$$
\begin{aligned}
& \forall \quad m_{0}, m_{1} \in M \text { : } \\
& {\left[m t L o L b C_{m_{1}}, m t H i U b C_{m_{1}}\right) \neq \phi:} \\
& \operatorname{mbef}_{m_{0}, m_{1}} \equiv\left(m t H i V_{o_{0}}+d t_{s} \leq m t L o V_{m_{1}}\right) \\
& m_{b e f}^{m_{1}, m_{0}}, \equiv\left(m t H i V_{o_{1}}+d t_{s} \leq m t L o V_{m_{0}}\right) \\
& \operatorname{msep}_{m_{0}, m_{1}} \equiv\left(\text { mbef }_{m_{0}, m_{1}} \vee \operatorname{mbef}_{m_{1}, m_{0}}\right) \text {, }
\end{aligned}
$$

Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Software Implementation

User Interface

User Interface Parameters

LeopardGUI: LEan Optimiser of Platforms And Routings including routing Dependencies

Date

From Hour
Up To Hour
Extract Macro Infrastructure From

Select Station

Fix Station Movements
if in original plan: same relation, same platform track then enforce in optimised plan: same platform track too

Mirror unmatched movements by turn-around time

Popup Platforming Plan for

```
FINAL Station Connectivity that Luks Routes will be checked against and rejected against in case of no match,
incOrDecKm,i0,L_id,L_nm,LST_idc,LST_track_dir,LST_nm,LST_vMax,LS_idc,LS_side,P1P2_orient,P1_id,P1_nm,P1_sym_nm,P2_id,P2_nm,P2_sym_nm,LS_StSi
de
[inc],[out],503,[50A], 1,[1],A,140,1022,1,1,210,BRUGGE,FR,609,]ABBEKE,[FGB],2
(inc],[in],503,[50A], 1, [1],A, 140,598,2,1,1596,Y.OOSTKAMP,[YFPO], 210,BRUGGE,FR,1
[inc],[out],503,[50A], 2,[2],B,140,1022,1,1,210,BRUGGE,FR,609,]ABBEKE,[FGB],2
[inc],[in], 503,[50A], 2, [2], B, 140,598,2,1, 1596,Y.OOSTKAMP,[YFPO], 210,BRUGGE,FR,1
```


Solver running times

Table: Solver running times on a Xeon CPU E31240 Quad Core 3.3 GHz, comparing CPLEX v12.5.0.0 32 bit, XPRESS BCL v4.6.1 64 bit and Gurobi v5.6.3 64 bit

| Solver | \# Stations Optimally Solved in | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |\(\left.\quad \begin{array}{r}\# Stations

Suboptimally

Solved in\end{array}\right]\)

Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Antwerp-Central Original

Original Assignment

Figure: Antwerp-Central original Assignment: 3 levels, some conflicts

Antwerp-Central Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Antwerp-Central Opt. assignment, non-periodic: no conflicts, some unplaced trains

Antwerp-Central Optimised, Periodic

Optimised Assignment, Periodic

Figure: Antwerp-Central Opt. assignment, periodic: no conflicts, some unplaced trains

Antwerp-Central Both, Non-Periodic

Both Assignments, Non-Periodic

Figure: Antwerp-Central: comparing original and optimised assignments

Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Antwerp-Central Both, Non-Periodic

Antwerp Station

Figure: Antwerp Station

Original Assignment

Figure: Ghent Sint-Pieters original Assignment: some conflicts

Ghent Sint-Pieters Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Ghent Sint-Pieters Opt. assignment, non-periodic: no conflicts, some unplaced trains

Both Assignments, Non-Periodic

Figure: Ghent Sint-Pieters: comparing original and optimised assignments

Ghent Sint-Pieters Both, Non-Periodic

Ghent Station

Figure: Ghent Station

Comparing Original and Optimised Assignment KPls

20	0	Orig Plan 401	0	0	0	0	0	20	0	Opt Plan 401	0	0	0	0	0	Both Plan 401
23	0	Orig Plan 402	33	8	8	13	-337	17	6	Opt Plan 402	0	7	3	9	-31	Both Plan 402
9	0	Orig Plan 404	0	0	0	0	0	9	0	Opt Plan 404	0	0	0	0	0	Both Plan 404
10	0	Oria Plan 405	0	0	0	0	0	10	0	Opt Plan 405	0	0	0	0	0	Both Plan 405
23	0	Oria Plan 406	0	0	0	5	0	23	0	Opt Plan 406	0	2	1	9	-9	Both Plan 406
9	0	Orig Plan 409	0	0	0	0	0	9	0	Opt Plan 409	0	0	0	0	0	Both Plan 409
13	0	Oria Plan 412	0	0	0	0	0	13	0	Opt Plan 412	0	0	0	0	0	Both Plan 412
21	0	Orig Plan 413	0	0	1	4	-1	21	0	Opt Plan 413	0	0	1	4	-1	Both Plan 413
28	0	Oria Plan 414	0	0	2	5	-2	28	0	Opt Plan 414	0	0	2	5	-2	Both Plan 414
46	0	Orig Plan 415	0	8	20	18	-52	46	0	Opt Plan 415	0	8	20	18	-52	Both Plan 415
14	0	Orig Plan 418	0	0	0	0	0	14	0	Opt Plan 418	0	0	0	0	0	Both Plan 418
17	0	Oria Plan 421	0	0	0	0	0	17	0	Opt Plan 421	0	0	0	0	0	Both Plan 421
15	0	Oria Plan 422	0	0	0	1	0	15	0	Opt Plan 422	0	0	0	1	0	Both Plan 422
7	0	Oria Plan 423	0	0	0	0	0	7	0	Opt Plan 423	0	0	0	0	0	Both Plan 423
24	0	Orig Plan 424	0	1	2	1	-6	24	0	Opt Plan 424	0	1	2	1	-6	Both Plan 424
23	1	Oria Plan 427	0	0	0	4	0	24	0	Opt Plan 427	0	0	0	4	0	Both Plan 427
0	12	Orig Plan 432	0	0	0	0	0	12	0	Opt Plan 432	0	0	0	0	0	Both Plan 432
14	0	Oria Plan 433	0	0	0	0	0	14	0	Opt Plan 433	0	0	0	0	0	Both Plan 433
11	0	Orig Plan 434	0	0	0	0	0	11	0	Opt Plan 434	0	0	0	0	0	Both Plan 434
10	0	Oria Plan 435	0	0	0	0	0	10	0	Opt Plan 435	0	0	0	0	0	Both Plan 435
12	0	Oria Plan 436	0	0	0	0	0	12	0	Opt Plan 436	0	0	0	0	0	Both Plan 436
34	0	Orig Plan 438	1	4	10	8	-35	33	1	Opt Plan 438	0	5	5	11	-25	Both Plan 438
9	0	Oria Plan 442	0	0	0	0	0	9	0	Opt Plan 442	0	0	0	0	0	Both Plan 442
15	0	Orig Plan 446	0	1	2	1	-6	15	0	Opt Plan 446	0	1	2	1	-6	Both Plan 446
33	0	Oria Plan 447	0	0	0	9	0	33	0	Opt Plan 447	0	0	0	9	0	Both Plan 447
33	1	Orig Plan 449	0	0	0	1	0	34	0	Opt Plan 449	0	0	0	2	0	Both Plan 449
87	7	Oria Plan 455	16	13	20	17	-216	92	2	Opt Plan 455	0	14	17	16	-73	Both Plan 455
36	0	Oria Plan 457	0	2	5	9	-13	36	0	Opt Plan 457	0	2	5	9	-13	Both Plan 457
34	1	Orig Plan 458	3	1	7	6	-38	34	1	Opt Plan 458	0	4	7	6	-23	Both Plan 458

12281	613		752	1524	2245	-8123	12641	253	0	707	1578	2409	-4406
	hi=red=work to do	hi=bad	hi=bad	hi=bad	hi=bad	low=bad		hi=red=work to do		hi=bad	hi=bad	hi=bad	lo=bad
		lo=good	$10=g 00 \mathrm{~d}$	$10=$ good	lo=good	hi=good				lowgood	$10=g o o d$	$10=g o o d$	hi $=$ good
	12894							12894					
	Sum							Sum					
	4,75\%							1,96\%					
	\% Unplatlormed							\% Unplatformed					
	95,25\%							98,04\%					
	\% Platformed							\% Platformed					

TPP Research and Integration

publication	integrated: company in tool(s)
[Zwaneveld et al.(1996)Zwaneveld, Kroon, Romeijn, Salomon, Dauzère-Perès, Van Hoesel, and Ambergen]	ProRail [Zwaneveld(1997)]
[De Luca Cardillo(1998)]	STATIONS
[Delorme and Rodriguez(2001)]	SNCF
[Billionnet(2003)]	RECIFE
[Carey and Carville(2003)]	FR
[Caprara et al.(2011)Caprara, Galli, and Toth]	British
[Lusby et al.(2011)Lusby, Larsen, Ryan, and Ehrgott]	Rail, UK
[Sels et al.(2014)Sels, Dewilde, Catrysse, and Vansteenwegen]	RFI, IT

Table: Comparing TPP Research \& Integration

Conclusions \& Future Work

- Conclusions
- Leopard usable as check of current platform assignment
- indicates all conflicts
- indicates all robustness issues
- Leopard usable as generator of correct platform assignment
- guarantees no conflicts
- can have robustness issues, indicates them
- fast as a Leopard
- Further Work
- roll-out with Infrabel planners
- avoid robustness issues
- weight trains per \# passengers
- allow some variability of platform times
- allow multiple routes per line-platform combination

Questions

- Questions?
- sels.peter@gmail.com
- www.LogicallyYours.com/Research/
- www.LogicallyYours.com/Company/

Billionnet, A., 2003. Using Integer Programming to Solve the Train Platforming Problem. Transportation Science 37 (1), 213-222.
(1. Caprara, A., Galli, L., Toth, P., 2011. Solution of the train platforming problem. Transportation Science 45 (2), 246-257.
國 Carey, M., Carville, S., 2003. Scheduling and platforming trains at busy complex stations. Transportation Research, Part A 37 (1), 195-224.
De Luca Cardillo, D., 1998. k L-List τ Colouring of Graphs. European Journal of Operational Research 106 (1), 160-164.
(Relorme, X., Rodriguez, J., 2001. Heuristics for railway infrastructure saturation. Electronics Notes in Theoretical Computer Science 50 (1), 39-53.
Rusby, R. M., Larsen, J., Ryan, D., Ehrgott, M., 2011. Routing Trains Through Railway Junctions: A New Set-packing Approach. Transportation Science 45 (1), 228-245.

Sels, P., Dewilde, T., Cattrysse, D., Vansteenwegen, P., 2014. The Train Platforming Problem: The Infrastructure Management Company Perspective. Transportation Research Part B 61, 55-72.

R- Zwaneveld, P. J., 1997. Railway Planning and Allocation of Passenger Lines. Ph.D. thesis, Rotterdam School of Management.

围 Zwaneveld, P. J., Kroon, L., Romeijn, H., Salomon, M., Dauzère-Perès, S., Van Hoesel, S. P. M., Ambergen, H. W., 1996. Routing Trains Through Railway Stations: Model Formulation and Algorithms. Transportation Science 30 (1), 181-194.

