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ABSTRACT

A theoretically calculated station capacity very of-
ten appears to be based on an unrealistic train set.
By considering the actual, current, as well as future
train set scenarios with increasing traffic, we deter-
mine the realistic station capacity of the railway
stations in Belgium. Our module is able to deal
with real-life station and train sets in a few min-
utes and is now fully integrated in the software of
Infrabel, the Belgian Railway Infrastructure Man-
agement Company.

Keywords: Train Station Capacity, Platforming,

Mixed Integer Linear Programming

INTRODUCTION

Infrastructure Management Companies need to be able
to check if their stations can manage the increasing
train traffic. They do this by looking at the proposed
timetable and checking whether all trains can be routed
to and from a platform within the times dictated by the
timetable. Note that this capacity check is done after
the time table construction. Therefore, we suppose in
this research that the platform times are fixed.

Up to now, at Infrabel, this check was done man-
ually, without use of optimization tools. Because of
the combinatorial complexity of this problem, for a hu-
man, it is a very hard or even impossible job to perform
without errors, let alone optimally. Cases of wrongly
considering two routes as being in conflict as well as
cases of wrongly considering two routes as not being
in conflict have been noted. This resulted in respec-
tively under- and overestimation of capacity in these
cases. To more correctly estimate station capacity, the
presented research and development was carried out.

In the first section we will present the platforming
optimization problem. In the second section we will
present some model aspects and in the last, we will
draw some conclusions and hint at some further work.
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PROBLEM AND MODEL

Literature Review

We refer to Caprara et al. [1] and [2] for an extensive re-
spectively short Train Platforming Problem (TPP) re-
search literature survey. Contrary to some other TPP
research, as done by Zwaneveld et al. [3, 4] and Kroon
et al.[5], in our problem, where the timetable is given,
we assume the platform times (train arrival and train
departure time) of both train sets to be fixed. We also
assume that there is at most one routing between each
line and platform. This is almost the same problem
as considered by De Luca Cardillo and Mione [6] and
Billonnet [7], so we compare our results with theirs.

Infrastructure Modeling

A station will be represented by a graph with edges and
vertices. Train stations typically have from 1 to around
20 platforms. These are in general parallel. These plat-
forms form the center of the station. On both platform
ends, we have some straight tracks, called lines in this
abstract, that continue straightly from or to the plat-
forms. Other tracks cross these straight lines. The
collection of these lines and tracks is called the routing
grid. We have a routing grid on each side of the sta-
tion. The goal of these routing grids is to be able to
connect from the platforms to a set of lines going to or
coming from other stations. The crossing tracks allow
for a train coming from one station to end up on more
than one possible platform in the next station. This re-
dundancy in routings allows more flexibility in assign-
ing trains to platforms, which should increase practical
station routing capacity. Of course they also introduce
restrictions, since crossing routings, also called depen-
dent routings, cannot have two trains on them at the
same time. Moreover, a safety buffer needs to be in-
serted between them.

So, as for infrastructure, we define a set P of plat-
forms p, a set R of routings r, their relational mapping
r2p : R→ P : r 7→ p = r2pr and a set L of lines l.



2nd International Conference on
Models and Technologies for Intelligent Transportation Systems

22-24 June, 2011, Leuven, Belgium

Traffic Modeling

Next we have the train traffic which we can structure
by inspecting the cases that occur.

a train can arrive from one side of the station, stop
at a certain platform and leave to the other side of the
station;

a train can enter and leave the station at the same
side;

two trains can be merged in a station which means
the two trains enter from a different routing (either on
the same or a different side) and have to end up on the
same platform to be coupled and leave the station at
any side;

trains can be combined from more than two trains;

A train entering or leaving a station through a rout-
ing and a platform is called a movement. Each move-
ment happens on a particular routing. An occupation
is a collection of movements that share the same plat-
form. Each movement will have a different routing, but
all the movements within one occupation will pass the
same platform. So each movement is associated with a
routing and each occupation with a platform.

So we can now define a set O of occupations. Each
occupation o ∈ O has a set Mo of movements m. Each
movement m is of type IN or OUT. We define MIN ⊂
M as the set of IN movements and MOUT ⊂M as the
set of OUT movements. It follows that MIN∪MOUT =
M . A movement has a single constant time to,m. For
an IN movement, this is the time the middle of the
train arrives at the middle of the platform, according
to the planning. For a train that stops at the current
station, this is the time its doors can open and the
train is ready to let passenger go and receive new ones.
For a train that passes the current station, this time
is just the time its middle point passes the middle of
the platform. For an OUT movement, in the case of a
stopping train, it is the departing time. An occupation
will always have at least one IN and at least one OUT
movement. For a passing train the times of the IN
and OUT movements are the same. For a stopping
train the OUT movement time will be larger than the
IN movement time, by the dwell duration, which is
typically a minute or two. Each movement also needs
to respect a fixed, known line where its train enters
or leaves the station. Optionally, for any movement,
platform and/or routings can be fixed. The task of the
optimizer module is to choose platform and routing
wisely so that no train pair conflicts arise.

Feasibility

The allocation problem can now be defined as trying to
find an assignment for every movement to one routing
and for each occupation to a platform.

Of course the routings that are chosen for a move-
ment must connect to the platform chosen for the oc-

cupation the movement belongs to.
A further constraint will be that, if we call the rout-

ings and the platforms the resources, no single resource
can have more than one allocation to it at any time.

On top of this, some routings are dependent, which
means that they have a sub-resource, like a switch or
other routing part in common. We will also require
that between two dependent routings, only one can be
used at any time.

Optimality

Next to the real platforms and routings, we introduced
a fictive platform and associated fictive routings to al-
low the model to always be feasible. This fictive plat-
form will have all trains assigned to it that cannot be
assigned to real platforms. Now the problem, techni-
cally, becomes an optimization instead of a feasibility
problem.

To define optimality, we construct a cost function.
It consists of two types of cost terms. The first cor-
responds to a cost for changing a platform for already
planned trains and its allocations. The second type
is associated with the concept of fictive platform and
associated fictive routings. These are introduced to
handle all traffic that cannot be mapped on the exist-
ing platforms or routings. These fictive resources can
only be used at high cost. The total cost function will
be minimized.

If keeping the already planned trains on the current
platforms is no longer a goal, planning becomes easier.
This will be especially beneficial if the original planning
was not yet done with station capacity optimization
in mind. The user of the optimizer can control its
behavior in this sense.

Time Definitions

Figure 1 shows a train passing its IN-routing, platform
and OUT-routing. The time constants and variables
indicated on it will be used in the model.

The times a train has to arrive and depart on a plat-
form p are given as tp,arr and tp,dep in the occupations
IN and OUT movements respectively.

We follow the train in Figure 1 in increasing time
and space dimensions, as it goes from the IN routing
over the platform to the OUT routing. The top half of
this figure shows two curved lines. The leftmost curve
describes the position of the head of the train, evolv-
ing along the time and space axes. The rightmost curve
shows the tail of the train. The vertical distance be-
tween them, along the space axis, represents the length
of the train which is of course constant. The curved
parts represent the deceleration and acceleration be-
fore and after the dwell time at a stations platform for
a stopping train. However, our model will also be valid
for passing trains.
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The bottom half of Figure 1 is in fact a vertical
projection of its top half. This leaves the time dimen-
sion only for the different resources, being two routings
and one platform. By doing this projection we get oc-
cupation intervals for each resource. This is the way
resources are assigned in practice.

Note that there is a time overlap between each pair of
subsequent resources the train travels through. This is
due to the head of the train being on the next resource,
while the tail of the train is still on the current resource.

tparro,m is the time where the middle of the train
arrives at the middle of the platform and marks the end
of the IN movement. tpdepo,m is the time where the
middle of the train is still at the middle of the platform
and marks the beginning of the OUT movement. From
these two times, and by choosing IN- respectively OUT
routings, we will subtract respectively add routing du-
rations and calculate derived times outwardly.
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Fig. 1: Occupation Times and Durations

Mixed Integer Linear Programming Model

Based on the notation introduced above, a MILP model
is constructed describing the objective function and

taking into account all constraints. The central deci-
sion variables are boolean matrices opo,p, which maps
each occupation to a platform and mro,m,r, which maps
each occupations’ movement to a routing. Starting
from the fixed platform times, we calculate outwardly,
the upper and lower interval bounds for all possible oc-
cupations and movements. Worst case interval bounds
are used to avoid formulating conflict constrains be-
tween actual interval pairs that can never overlap in
time. We define boolean ordering variables before and
after, between each pair of occupations and also as their
disjunctions, the separated variables. If two occupa-
tions are on the same platform, and can potentially
overlap, they are explicitly time separated. This is
written as opo0,p0 ∧ opo1,p1 =⇒ o0sepo1o0,o1 . Simi-
larly, movements on common routings are time sepa-
rated as, mro0,m0,r0 ∧mro1,m1,r1 =⇒ m0sepm1m0,m1

.
The constraints ∀o ∈ O : ∀m ∈ Mo : ∀r ∈ R :
mro,m,r =⇒ opm2om,r2pr

nicely describe the com-
patibility between movements and their routings.

RESULTS

The optimizer was developed in C++ in 2 months, runs
on OS X, Linux and Windows and is easily switchable
to use any of the solvers mentioned in table 1. It
reads infrastructure and train files, solves the problem
and writes out solution files which are used by the call-
ing software. It also writes out a graph containing all
resources, being routings and platforms on the vertical
axis and time on the horizontal axis, which displays all
usage time intervals. Both the original and optimized
allocation are given in the same figure so that the user
can most easily see which trains changed platform.

Table 2 gives some results of optimizer runs on 5 sta-
tions with their respective morning peak traffic. MILP
matrices that describe the problem get relatively big
but the most recent release of the Cplex solver is able
so solve each problem to optimality within 9 minutes.

SW
SW (Solver) HW

HW

a Cplex v12.2 Apple 2.8 GHz
b Gurobi v3.0.1 Apple 2.8 GHz
c Cplex v11.2 HP 1.99 GHz
d Xpress v7.0.2 HP 1.99 GHz

Table 1: Software (Solver) and Hardware Configurations

Apple runs OS X 64 bit. HP runs Windows XP-32
bit. Both have an Intel Core 2 Duo Processor.

CONCLUSIONS

A method and tool for choosing a platform for a train
set with fixed platform arrival and departure times was
developed. It handles train splits and merges.
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Station SW #Con- #Var- Time
#P,#R,#O HW straints iables (h,m,s)

Bergen
a 103362 33473 8m36s
b 109955 37175 n.a. in 23h

7,128,178
c 103365 33474 n.a. in 2.5h
d 109955 37175 OM at 54m

Brugge
a 34384 10958 28s
b 35627 11717 20s

10,198,68
c 34384 10958 7s
d 35627 11717 26s

Dender- a 154553 47187 1m25s
leeuw b 159226 50074 21m44s

9,206,211
c 154553 47187 10m5s
d 159226 50074 2m16s

Leuven
a 105709 36242 8m14s
b 113119 40676 40m41s

14,324,256
c 105709 36242 5m5s
d 113119 40676 1h32m8s

Mechelen
a 9959 4756 0.32s
b 12201 6292 4.43s

10,170,121
c 9959 4756 1.32s
d 12201 6293 2.2s

Table 2: Optimization Execution Times

#P = number of real platforms. #R = number of real
routings. #O = number of occupations, initial and

supplementary together. Cplex Matrix dimensions are
already (slightly) reduced ones. n.a. = not available
(not enough patience limit). OM = Out of Memory.

For each train, a preferred platform can be set.

For realistic input size, being a realistic station and
a few morning peak hours worth of train traffic, with
the fastest MILP solver, the solver response time is
from immediate to about 9 minutes, which makes it a
very practical tool. The low solver times are due to
the fixing of platform departure and arrival times to-
gether with a filter technique where we avoid adding
constraints that describe conflict avoidance of pairs
of trains that, independent of routing and platform
choices, can be deduced to never arise.

On average, Cplex has the lowest solution times.

De Luca Cardillo and Mione [6] use a graph coloring
algorithm and heuristics to find a good feasible solu-
tion, but optimality is not guaranteed. Of course, they
achieve lower calculation times, often below a second.

Billonnet [7] uses a similar MILP model and also
achieves optimal solutions at solver times very similar
to ours, also up to 10 minutes. However, there are
some differences. First, our problems are based on real
world operational data, while Billonnet generates ran-
dom instances. Second, Billonnets set of same-time
train pairs is fixed before the MILP phase is started.
In our model, routing allocation affects this conflict set
via the different routing durations, so this effect has to

be incorporated in the MILP model. This results in
about 10 times the number of variables and about 10 to
100 times the number of constraints. Third, thanks to
this fixed conflict set, Billonnet could use clique-based
cuts, which lower solver times. Fourth, we cover the
full search space, while for his fastest results, Billonnet
used a restricted one (ILP2). Fifth, Billonnet, in 2003,
used slower software (XA solver) and hardware.

POSSIBLE EXTENSIONS

Currently, our model only allows one train on a rout-
ing at a time. Even though this is safe, in a real sta-
tion, liberation points exist, which allow a second train
to pass onto the same routing as the first, as soon as
the first train has passed the liberation point. Mod-
eling this too would improve the maximum capacity
of the model and get it closer to reality. However, in
practice, railway companies consider liberation points
as a method to be used in real time to solve cases of
unexpected peaks in traffic, but they don’t want the
planning already to rely on it.

Our model is usable in other contexts than just ca-
pacity estimation. Indeed, for example, merely chang-
ing the goal function could result in a system also try-
ing to lower transfer passenger walking distance.
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