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Abstract

Automatically generating timetables has been an active research area for some time, but the application of this
research in practice has been limited. We believe this is due to two reasons. Firstly, some of the models in the
literature impose artificial upper bounds on time supplements. This causes a high risk of generating infeasibilities.
Secondly, some models that leave out these upper bounds often generate solutions that contain some very large time
supplements because these supplements are not penalised in the objective function. The reason is that these objective
functions often do not completely correspond to the true goal of a timetable. We solve both problems by minimising
our objective function: total passenger travel time, expected in practice. Since this function evaluates and indirectly
steers all time related decision variables in the system, we do not need to further restrict the ranges of any of these
variables. As a result, our model does not suffer from infeasibilities generated by such artificial upper bounds for
supplements.

Furthermore, some measures are taken to significantly speed up the solver times of our model. These combined
features result in our model being solved more quickly than previous models. As a result, our method can be used for
timetabling in practice. We demonstrate our claims by optimising, in about two hours only, the timetable of all 196
hourly passenger trains in Belgium. Assuming primary delay-distributions with an average of 2% on the minima of
each activity, the optimised timetable reduces expected passenger time in practice, as evaluated on the macroscopic
level, by 3.8% during peak hours. This paper demonstrates that we added two important missing steps to make cyclic
timetabling for passengers really useable in practice: (i) the addition of the objective function of expected passenger
time in practice and (ii) the reduction of computation time by addition of well chosen additional constraints.
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1. Introduction and Literature Comparison

In railway operations, the construction of a train timetable, on the highest level of abstraction, means the deter-
mination of the arrival and departure times for each train in the system, in each station it serves or passes. This is a
large combinatorial optimisation problem with, for example, 165000 constraints and about 200000 variables for the
Belgian network of hourly passenger trains. It requires hours rather than minutes to solve. Many constraints should be
respected. For example, minimum ride and dwell times should not be violated, two trains on the same infrastructure
resource should be separated by some minimum time and passenger transfers should be assigned neither too much nor
too little time. In this section, we introduce our timetabling approach and compare it with the approaches available
from the literature. We take the approach of presenting in the order that research expanded. This is usually also the
chronological order but some exceptions occur.

1.1. The Objective of a Timetable
Watson (2008) reports the story of the ’disaster timetable’ that was set up in the United Kingdom after the gov-

ernment required in 1993 that train operator companies and the railway company, back then called Railtrack, operate
separately. Since the European Community imposed a similar measure on train companies in all its member states in
2005, this story has a wider relevance. Watson (2008) concludes that ’The total train planning problem was no longer
any one organisation’s responsibility and, hence, inevitably, Railtrack concentrated on efficient network utilisation
and train operators on efficient resource utilisation.’ As an example, Watson (2008) mentions that no stakeholder
was interested in the synergetic network effects of properly planning the transfers between service lines of different
operators. He suggests to resolve these problems by setting a clear objective for the whole timetable. Additionally,
software should be developed to support shorter train timetable development iterations. We address both remedies
in this paper. We believe that setting this objective to passenger service, for example by minimising the expected
passenger time, will benefit passengers. Consequently, this increased experienced customer value will trickle down
along the value chain from the passengers, to the train operator companies to the infrastructure company. This paper
makes clear how this objective is used in both quick, automatic optimisation and evaluation of timetables.

So our objective is to design a timetable in an automated way. The main characteristic of this timetable should be
that the passenger travel time in practice, for all passengers together, is as low as possible. We take into account small
train delays, occurring on a daily basis in the current timetable. We suppose fixed minimum times for ride, dwell,
transfer and turn-around activities and only determine and add supplements on top of these. According to our objec-
tive, these supplements should be large enough to compensate for typical delays, but the supplements should also not
be too large in order to avoid needless extra waiting or travel time for the passengers. Since we focus on timetabling,
we do not consider other measures that could improve the robustness or performance of the railway system such as
network design, line design, halting pattern nor dispatching rules. We successfully apply our optimisation method
to the network of all passenger trains in Belgium. However, our method is generally suited for quick, automated
generation of robust, cyclic timetables for any passenger transport network.

1.2. Efficiency and Robustness of a Timetable
In their timetabling overview paper, Cacchiani and Toth (2012) make a distinction between nominal timetabling

and robust timetabling methods. For the first, they indicate that objective functions vary between minimising the
number of changes with respect to a preferred timetable, maximising customer satisfaction by minimising (planned)
passenger time and minimising cost for the railway company. For robust timetabling, they describe that there is a
trade-off between efficiency, the nominal objective - if one focusses on passenger or train travel time - and robustness.
They mean that both cannot be optimal at the same time. Put otherwise, there is a cost of robustness. To the same
effect, Schöbel and Kratz (2009) propose a pareto optimisation technique with these two separate criteria. Similarly,
Cacchiani et al. (2012) aim for an efficient timetable via the objective function and add a Lagrangian heuristic to it
to obtain some robustness. They state that the end user is responsible to make the trade-off between efficiency and
robustness. We see this differently. A better solution to this apparent dilemma is to take expected passenger time
in practice as the stochastic objective function of the timetable. It is clear that both efficiency and robustness have
an effect on expected passenger time in practice but if one also carefully models both the effects on this objective
function via a stochastic model of expected primary delays, the objective function will make this tradeoff. This total
objective function was used in Sels et al. (2011a) and is also used in this paper. Dewilde et al. (2014) also proposed



this same objective function as the preferred approach to strike the right balance between efficiency and robustness in a
timetable. Supplements will not be so small that the smallest primary delay cannot be absorbed. Likewise supplements
will not be so large that the journey times become inefficiently large for passengers. In the timetables produced by
our model, these two positive properties are merely the automatic result of minimising the expected passenger time in
practice.

Kroon et al. (2006) focus on improving a timetable that is being used in practice, assuming that train orders have
to remain fixed. This means that actual realisations that are obtained from logged train times are relevant. In The
Netherlands, the type and granularity of the train logging measurement points in the infrastructure allows separation
of primary and secondary delays from these logs (Goverde and Hansen, 2000; Daamen et al., 2009). Kroon et al.
(2006) then perform a post-optimisation of arrival and departure times so that the average (primary plus secondary)
delay is minimal with respect to the primary delay distributions which historically occurred for the considered trains.
They call this a mixed simulation-optimisation approach. (Liebchen et al. (2009) call this a two-stage stochastic
optimisation.) This method was applied on a corridor called ’the Zaanlijn’ and the resulting timetable was put in
practice. This experiment confirmed the results expected from theory. In practice, the optimised timetable proved
to be more robust against small primary delays. The work in Kroon et al. (2006) is intended to improve an existing
timetable already in operation, while our methodology intends to construct timetables from scratch. Because of this,
our method differs in two aspects. Firstly, this means that we still must determine train orders. We also choose
to determine all time supplements at the same time since these are interdependent with train orders. Secondly, our
model estimates secondary delays as a function of chosen train orders and time supplements when a given set of
primary delays is assumed. As such, it determines the best train order and time supplements between trains. These
supplements are also the essential variables to be determined in the queuing model of Wendler (2007).

Apart from robustness, a further possible requirement for timetables is the criterion of resilience, meaning that,
after a perturbation, the timetable is able to evolve back to the original one instead of diverging from it, and preferably
must do so quickly. Semet and Schoenauer (2005) tackle this via an evolutionary algorithm.

Resilience is very close to recoverable robustness, which is defined by Liebchen et al. (2009). This technique
requires that for every likely input scenario of a running train, including primary delays, that the timetable is able
to recover from it. They state that two-stage stochastic optimisation is not able yet to produce, from scratch, robust
timetables for instances of the size of an entire country. However, in our current paper, we show that with our PESP
based model which includes a stochastic objective function, this can be done in a practical computation time. This is
probably because we do not use the explicit scenarios present in two-stage stochastic optimisation, which naturally
make the linear program model very large, but rather assume independent primary delay distributions on every activity
in the graph. Note that this assumption covers a very broad range of scenarios of likely ’input’ train runs, be it
implicitly. It also delivers a simpler model. Our requirement is then that the negative influence of disturbances,
weighted with the probability that they occur, on expected passenger time in practice is minimal. Liebchen et al.
(2009) further present a case study of recoverable robust train platforming, but not on timetabling.

Fischetti and Monaci (2009), propose a technique called called light robustness. It couples robust optimisation
with a simplified two-stage stochastic programming and sometimes achieves results of comparable quality to stochas-
tic or robust modelling while requiring lower modelling and computational efforts.

For a more complete overview of robustness definitions, we refer to Dewilde et al. (2011). They mention that
passengers prefer a timetable which implies minimal expected passenger time under expected primary delays. The
authors further demonstrate that this objective results in an amount of robustness that is ideal for passengers. By
choosing this objective function, the authors follow and support the recent trend in passenger railway research to give
a higher weight to the concerns of the passengers. We use the same objective function in this paper.

1.3. The Periodic Event Scheduling Problem (PESP) Approach

Cyclic timetabling formulated in the PESP way has been studied by, amongst others, Serafini and Ukovich (1989),
Schrijver and Steenbeek (1993), Odijk (1996), Nachtigall (1994), Goverde (1998a, 1999) Peeters (2003), Liebchen
(2006, 2007), Kroon et al. (2007, 2009) and Schöbel and Kratz (2009).

In PESP, an event activity graph G(V,E) consisting of the event set V and the activity set or edge set E, is set up.
Events are arrival and departure times of trains at stations and represent the vertices of the graph G while edges are
train activities (ride, dwell or turn-around) or passenger activities (transfer) or just represent separation constraints



between events (headway-times). For a timetable with cyclic period T and model time resolution δ, the general vertex
and edge constraints over the graph G(V, E) as adapted from Sparing et al. (2013) are

∀(i, j) ∈ E : wi, j = x j − xi + zi, j · T,
∀i ∈ V : 0 ≤ xi ≤ T − δ,
∀(i, j) ∈ E : 0 ≤ wi, j ≤ T − δ,

(1)

where xi, x j are cyclic begin and end times - to be considered as the minutes after the hour if T equals one hour -
wi, j is the duration chosen for the activity (i,j), zi, j is an integer, either 0 or 1, and when it is 1, it represents an overflow
over the period T in the cyclic timetabling model. Each activity duration wi, j is subject to a lower bound li and an
upper bound ui.

Our model deviates from this traditional approach in a number of ways. Firstly, we do not constrain our train
departure and arrival times (xi in equation (1)) to be between 0 and T − δ, but rather between a start hour (e.g.:
6am) and end time (e.g.:11am). This has the direct advantage that for the planning of all ride and dwell activities,
no single integer variable is necessary. Integer variables are what makes large MILP models hard to solve. But as
a consequence, secondly, for inter-train edges, like transfers, turn-around and headway edges, we will need integer
variables and the ranges of these variables will often even be larger than the (0, 1) range of the zi, j variables here.
However, we take measures to restrict these ranges. Thirdly, our variables corresponding to supplements on activities
are all continuous, while many other publications describe PESP models where those supplements are integer variables
(Schrijver and Steenbeek, 1993; Nachtigall, 1996; Liebchen, 2006; Peeters, 2003; Großmann, 2011). Often these
variables have a resolution of 1 minute. The motivation for using integer variables is probably that the published
timetable is traditionally required by the railway companies to have integer minutes. Note that the models formulated
as a Satisfiability (SAT) problem (Großmann, 2011; Kümmling et al., 2013) are essentially always integer variable
models. We take the approach of calculating a timetable in the highest time resolution possible for internal use. For
publication purposes to passengers, train arrival times can be rounded up to the minute level and train departure times
can be rounded down to the minute level. The fourth difference of our PESP model compared to most other PESP
models is that we restrict any supplement s only by s < T while previous PESP models almost always use a constraint
s < x, where x represents some small and relatively arbitrary amount of minutes like 2 to 10 or so. We can do without
these arbitrary upper bounds thanks to our objective function which prevents very large supplements. This avoids any
risk of creating infeasibilities due to upper bounds that are too tight. We give a proof of this in AppendixA. Lastly, we
also include all of the PESP constraints included in the traditional PESP models, except for the frequency edges and
associated regularity constraints that spread alternative trains evenly over the timetable period. So, equally spreading
of alternative trains is not considered in our model yet. We explain in section 7.4 why we prefer not to add these
regularity constraints. However, we do evaluate the amount of temporal spreading of alternative trains in the original
and generated timetable and compare these.

Serafini and Ukovich (1989) wrote the seminal paper on the PESP model defining the problem as the scheduling
of periodically recurring events, which leads to cyclic time-window constraints. By their disjunctive nature - due to
the two possible values of zi, j in equation (1) - the constraints may cause the exponential growth of the computational
complexity of the problem, depending on its size. Schrijver and Steenbeek (1993) were the first to apply PESP to
the Dutch railway system. They used a constraint programming approach without an objective function. Their efforts
resulted in the DONS and CADANS systems which today are still used at the Dutch principal passenger train operator
company, NS (Nederlandse Spoorwegen). Odijk (1996) first described the generation of constraints based on cycles in
the PESP graph, which can lower solver times. The helpfulness depends on the selection of the cycle set (Odijk, 1996;
Peeters, 2003). With his model, Odijk (1996) demonstrated that PESP allows to generate timetables for relatively
large networks, like The Netherlands.

Goverde (1998a, 1999) studied scheduling of optimal connections between trains, making the trade-off between
the effects of too little and too much planned time for a transfer under the occurrence of delays. Goverde (1999)
defines timetabling as the optimisation problem with decision variables being buffer times located on edges, rather
than decision variables being train arrival and departure times, located on the vertices. This reduces the number of
model variables. We define decision variables on both edges and vertices. Of course, we add constraints where these
variables are related. Defining vertex variables allows a user to impose absolute times, for example for an international
train arriving or departing at boundaries of the network considered.



Peeters (2003) discusses many possibilities of cycle bases in what is called the Cycle Periodicity Formulation
(CPF) of PESP. Up to now, none is proven to be the optimal set to reduce solver times and some cycle bases also take
quite some time to be computed. We define and quickly calculate our own cycle sets. One cycle set is defined by the
transfer activities where sufficient transfer passengers are present. Other sets are selected because their cycles have
few edges and so induce simple constraints between only a few integer variables. We select the combination of cycle
sets that reduces solver time the most for our experiments. More details are discussed in section 5.

Minimisation of dwell times has been used as the objective function by Lie (2006). He reports that some solutions
have ride activity supplements that are very large. To avoid this and similar problems, our objective function contains
expected passenger time terms corresponding to all activities that cause it: ride, dwell and transfer. Realising that a
timetable needs to be robust against primary delays, an objective function based on stochastic delay distributions was
investigated by Kroon et al. (2007). Improvement of the service for passengers has been reported by Vansteenwegen
and Van Oudheusden (2006) and the minimisation of waiting time using linear programming has been studied by
Vansteenwegen and Van Oudheusden (2007).

Liebchen (2007) produced the first cyclic timetable generated by optimisation that has also been put into practice.
It concerns the Berlin Underground with 37 trains. Liebchen (2007) reports the snag of very large supplements for
transfers that are not considered in his model, and so, do not occur in the objective function. However, these transfers
are taken by some transferring passengers and their expected transfer time may be too high. To avoid this problem,
the expected duration of all transfers should be present in the objective function, weighted by the number of people
expected to take them. In our approach, we define a potential transfer whenever two trains stop in the same station,
irrespective of their still unknown arrival and departure time and irrespective of the number of passengers we expect
to take this transfer. The expected passenger travel time of all potential transfers is included in our objective function.

Sparing et al. (2013) report that ’The complete optimisation of a railway timetable of realistic size is an extraor-
dinarily large mathematical problem. Some instances or similar subproblems of the timetable optimisation have been
successfully solved before.’ Here, the word subproblem means only considering a subset of trains of a network,
or/and only considering a subspace of the full search space. An example of the latter is due to Kroon et al. (2009)
who reported on a tool set that generated 20 different feasible solutions for the PESP problem for all Dutch periodic
passenger trains. These solutions were feasible, not optimal, since no objective function was defined. Their system
can find feasible solutions if they exist under the given initial parameters, indicating a subspace of the full search
space. If no solutions exist, the system lists the critical constraints that cannot be met. Since, for a user, it is hard
to be confronted with constraints and even harder to impossible to fix infeasibility among them, we want to build a
system that guarantees to deliver a solution. Our objective function will automatically, but in a soft way, limit the
length of the time supplements added to the timetable. Therefore, unlike most other research, we do not need any hard
constraints that formulate hard upper bounds on the supplements to constrain the search space. We use large ranges
for supplements which, unlike other research, makes that our model covers the whole solution space. Because of this,
we see no reason why our model, for some problem instance and if enough solver time is allowed, would not find
a solution if one exists. Practice confirms this, since for all our experiments in the last years, no single model was
reported to be infeasible by the solver. This is a huge advantage in practice.

For more information on the above models we refer to the publications themselves and to Cacchiani and Toth
(2012) for a comparison of the different constraints and objective functions between models in a common notation.

1.4. Other Macroscopic Approaches

Huisman et al. (2005) and Caimi et al. (2009) categorise the common approaches of train timetabling into two
streams, the first one being a macroscopic approach where one abstracts from the detailed track topology and only
determines train arrival and departure time per station. Within this stream, the mentioned Periodic Event Scheduling
Problem (PESP) is the most common, but there are other macroscopic approaches. For the timetables produced by
macroscopic models, naturally, feasibility on the microscopic level is not guaranteed. Microscopic models solve this
issue, but typically cannot yet produce a timetable for a whole country. In this section we discuss some of these other
macroscopic approaches and in the next section microscopic approaches are discussed.

Nachtigall (1996), early on, constructed an approach to tackle systems with vehicles that are to be planned with
different frequencies. Galli and Stiller (2010) also propose a method for such systems, claiming that traditional PESP
methods are underperforming for these. Nachtigall and Voget (1997) introduced an objective function equal to the



minimisation of waiting times and obtained schedules with a genetic algorithm. A different approach to macroscopic
timetabling other than PESP is taken in Nachtigall and Opitz (2008), by using modulo simplex calculations. This
publication presents an example application for 92 trains in Germany with periods of 20, 30, 60 and 120 minutes
and considering 570 of the 1200 transfers that was solved in 20 minutes. However, in this paper, we show that it is
paramount to evaluate over all transfers to know the real value of a timetable.

Burdett and Kozan (2010) use a job shop scheduling inspired technique to successfully schedule trains on sections
and crossing loops. Their examples go up to the size of 55 sections, 52 crossing loops and 54 trains and calculation
times stay below 8 minutes. Liu and Kozan (2011) extend this work to also allow scheduling for a mix of high- and
low-priority trains, where high-priority trains are required to run without waiting. The method of this paper achieves
a similar goal without having to resort to different train categories, by weighing time supplements by the number of
passengers that experience it. Großmann (2011) proved that PESP can be polynomially reduced to the satisfiability
problem (SAT). Großmann et al. (2012) and Kümmling et al. (2013) then used a satisfiability (SAT) solver instead of
an integer linear programming (ILP) solver to solve PESP models, with satisfying results for large networks, like the
high speed train network in Germany.

1.5. Microscopic and Decomposing Approaches
The microscopic stream of approaches concentrates on checking (Bourachot, 1986; Carey and Carville, 2003) or

constructing (Zwaneveld et al., 1996; Caimi et al., 2004, 2011) microscopically feasible timetables. This means that
for the occupancy of subsequent tracks for each train, a blocking time stairway is constructed and overlaps between
any stairways are checked or are guaranteed to not occur. At this level, signals as well as train properties like, length,
available acceleration and deceleration and weight are also considered in the timing calculations. Likewise, track
properties like length and curvature are taken into account. Before putting a timetable into practice, the property of
conflict freeness should be checked at this level.

One can suppose that macroscopic timetabling has been performed and then use the generated train arrival and
departure times in a station to generate a platforming and routing plan for as many trains as possible without changing
these times. Fixing these times, has the advantage that the macroscopic problem of timetabling and the microscopic
problem of platforming and routing in stations can be decoupled (Sels et al., 2014). However, sometimes this can
result in some trains not being able to be platformed or routed while in some cases this would be possible if these
times would also be allowed to change. The microscopic models of Caprara et al. (2011a) and Caimi et al. (2011) also
allow some limited shifts in arrival and departure times. When even within these allowed time shift windows, some
trains cannot be scheduled, they hint at the importance of providing feedback to the macroscopic level that describes
that arrival or departure times of these trains should be changed.

De Fabris et al. (2013) use a heuristic and model at the mesoscopic level to obtain timetables that are quickly com-
puted, yet quite accurate. They do not check the resulting timetable for microscopic feasibility yet. Schlechte et al.
(2011) construct a microscopic graph starting from routes in a station and then aggregate this graph into a macroscopic
graph. They present an example of the Simplon pass train corridor which, in one micro-to-macro iteration happens
to deliver a microscopic and macroscopically feasible timetable. Based on algorithms published in Cacchiani et al.
(2010) and earlier work in Bešinović et al. (2013), Bešinović et al. (2015) extend the work of Schlechte et al. (2011)
by also providing a de-aggregation algorithm from macro to micro. They also iterate between micro-level (obtaining
a microscopically feasible timetable) and macro-level (obtaining a timetable satisfying a macroscopic objective func-
tion). They obtain a timetable which has some degree of robustness via the requirement that capacity consumption
does not exceed the norms dictated by the UIC 406 leaflet (UIC, 2004). When this normative capacity consumption
is exceeded, some trains are automatically cancelled. The practical value of the approach is demonstrated on a case
study for the corridor Utrecht-Eindhoven in The Netherlands which contains 7 stations and 40 hourly trains pass or
stop in these stations. A microscopically feasible and macroscopically robust timetable was reached in 20 minutes
in 9 micro-macro iterations. No trains had to be cancelled since maximum capacity consumption in this corridor of
54.7% is below the 75% recommended by UIC. Compared to our approach in this paper, the method of Bešinović
et al. (2015) has the advantage that accurate modelling of microscopic details is present which achieves microscopic
feasibility. Our method has the advantage that we obtain a timetable for a whole country with 5 times more trains.
Also, in our approach to robustness, we achieve optimal robustness for passengers, whereas Bešinović et al. (2015)
follow the more crude robustness norm of UIC 406. Operators may sometimes insist on scheduling more trains than
is recommended by this norm and the operator’s question is then how to schedule the full set with minimal expected



interactions between train pairs. To solve this, we think that advantages of the microscopic method of Bešinović et al.
(2015) and our macroscopic method in this paper could possibly be combined by adopting our expected passenger
time function as objective function for the macroscopic part of the model of Bešinović et al. (2015).

Some authors decompose the problem of generating a microscopically feasible timetable for a whole country into
subproblems. Caimi et al. (2009) differentiate between condensation zones which are large complex stations where
train frequencies are high and compensation zones which have simple topologies and lower train frequencies. In
condensation zones, a timetable can be independently constructed from the rest of the network. In the compensation
zones, timetables are stitched together since they judge that in in these zones, more slack can be added. Caimi (2009)
reports how the mentioned slack in compensation zones is determined and how the separately constructed timetables
of condensation and compensation zones can be integrated. Any decomposing method can of course not guarantee
to generate a timetable that is fully optimal on the global level. In this paper we do not decompose our network but
strive for an optimal macroscopic timetable for a complete national network at once.

1.6. Timetabling Approach and Features Comparison
We summarise the differences in approach and features of the publications mentioned in the previous sections 1.2

to 1.5 in table 1. Note that feasibility under the macro section is usually only with respect to calculated minimum
runtimes and given minimum dwell times and macroscopic minimum headway times which are usually set to 3
minutes. It does not include conflict-freeness with respect to microscopically calculated minimum headways nor does
it guarantee that there will not be capacity issues inside stations. What becomes obvious from this table is that research
on macroscopic models report a higher number of trains than microscopic models. Also, macroscopic models tend to
have more evolved objective functions than microscopic models. Microscopic models produce solutions that respect
the microscopically calculated headway constraints and station capacity limits and are thus truly conflict free. Micro-
macro models try to combine benefits of both approaches. All models have their specific merits and disadvantages.

1.7. Paper Overview
In section 2, prior to describing our model, we discuss our assumptions about the input data and what is vari-

able versus fixed. Section 3 refers to our previously published objective function, passenger travel time expected in
practice, and to our earlier work on deriving passenger flows. These flows are required since we want to minimise
passenger travel time. In section 4, we describe the mandatory constraints of our PESP Mixed Integer Programming
Problem (MILP) model and in section 5 we present our cycle set and related constraints which decrease solver time.
Section 6 summarises the model in a few tables. In section 7, we show that our constraints avoid infeasibility issues
and that our MILP model, applied to all passenger trains in Belgium, results in a significantly better timetable for
passengers, after only two hours of solver time. Section 9 concludes and mentions possible further work.

2. Assumptions

Before presenting our model, this section explains the general assumptions made in this paper. The distribution
of the passenger demand in space is supposed to be known and available in an Origin-Destination (OD) matrix. This
matrix is derived from seasonal ticket sales. Since this represents around 80% of all trips, this data can be considered
as average demand. This also means that it is not representing any specific peak hour but rather the peak hours together
as a whole.

As in many European countries (Austria, Denmark, Germany, Great-Britain, Norway, Switzerland, The Nether-
lands) (Peeters, 2003), the Belgian railway operator requires a cyclic timetable with a period of one hour. Larger
countries typically also run some longer distance trains with lower frequencies. A reason sometimes given for cyclic
timetabling, as in Peeters (2003) and Cacchiani and Toth (2012), is that cyclic timetables are constructed so as to
make it easy for passengers to remember the train departure times. A stronger motivation is that a cyclic timetable is
more compact and also simplifies the material handling and crew rostering planning problems. A-cyclic timetables
are described by Ford and Haydock (1992) and are also called market-led timetables because these are more adapted



Table 1: Timetabling Approach and Features Comparison. n/r= nominal or robust, res. = resolution, CP = Constraint Programming, IP = Integer
Programming, ILP = Integer Linear Programming, SAT = satisfiability. cond. & comp. = condensation and compensation. heur. = heuristic, mc
flow = multi commodity flow. JSP = Job Shop Problem. sc = sections, cont. = continuous, disc. = discrete, NS = Nederlandse Spoorwegen ( =

Dutch Railways), NE = The Netherlands, BE = Belgium. GE = Germany.
publication approach time n/r objective #trains tool name@

res. (function) #stations company
#lines

macro timetabling
Serafini and Ukovich (1989) PESP 1’ n feasibility

Schrijver and Steenbeek (1993) PESP, CP 1’ n feasibility
DONS&CAD-
ANS@NS, NL

Nachtigall (1996) multiple freq. 1’ n feasibility 40l
Nachtigall and Voget (1997) genetic algorithm cont. r min(wait t., cost) 28t,42s
Peeters (2003) PESP, IP 1’ n,r various 37t,74s

Semet and Schoenauer (2005)
evolutionary

r
min. total delay,

algorithm resilience
Lie (2006) min. dwell time
Liebchen (2006)

PESP, ILP 1’ n
min. wait time

37t
@Berlin Un-

Liebchen (2007) some transfers derground, GE
Kroon et al. (2007) stochastic cont. r robustness 56t

optimisation improvement 40s

Nachtigall and Opitz (2008)
modulo simplex

1’ n
min. weighted 92t

calculations sum of slack ≥104s
Kroon et al. (2009) PESP, CP& 1’ n feasibility & DONS&CAD-

ILP improved transfers ANS@NS, NL
Schöbel and Kratz (2009) PESP

r eff. & robust.
(acyclic) pareto opt.
Fischetti and Monaci (2009) robust optim. &

simplified stoch. r light robustness 1l
programming

Cacchiani et al. (2010) (acyclic) Lagrangian heur. r eff. & robust. 1000t,54s
Galli and Stiller (2010) sharp trees n feasibility
Großmann et al. (2012) SAT, binary ..

1’ n
min. weighted 1336t, TAKT @DB

Kümmling et al. (2013) .. search heuristic sum of slack 3027s Netz AG, GE
Sparing et al. (2013) PESP cont. r min. cycle time

ILP (feas. & stab.)

This paper: Sels et al.
PESP

cont. r
min. expected

203t RhinoCeros
ILP

total passenger
847s @Infrabel, BE

journey time
micro timetabling: includes platforming and routing
Odijk (1996) PESP Cut Generation 1’ n feasibility 18t,1s

Zwaneveld et al. (1996)
branch & cut

1’ n feasibility 18t,1s
STATIONS

heuristic @NS, NL
Caimi et al. (2004) fixed point iter. heur. n feasibility 19t

local search optim. r delay tolerance 1s

Caimi et al. (2009)
decomposition

disc. r
max. planned 32t

& Caimi (2009)
in condensation

train movements 1s
& comp. zones

Burdett and Kozan (2010) JSP, tabu search cont. n feasibility 54t,

Caprara et al. (2011a)
Node Packing

disc. r
max. trains 237t

ILP planned 1s
Caimi et al. (2011) time exp. graph disc. r max. planned 67t

mc flow, ILP train movements 1s
Liu and Kozan (2011) JSP, ILP cont. n min. makespan 37t,43sc
De Fabris et al. (2013) (meso) heur., mc flow meso feas. ,120s
Sels et al. (2014) ILP, (fixed

cont. n
max # trains 1028t, Leopard

(acyclic and cyclic) arr. & dep. times) platformed 1s @Infrabel, BE
micro-macro timetabling: includes platforming and routing
Schlechte et al. (2011) (acyclic) aggregation 6s..30s n max. planned trains 196t,18s
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to variation in passenger demand between different hours or days. In cyclic timetables, this flow variation is typically
accommodated for by adding some morning peak specific and evening peak specific trains that are essentially each
others opposites. This is also our approach in this paper. The line network, representing the lines along which trains
services will be run, also called train relations, is fixed by the Belgian railway operator and we considered it given. It
is not altered in our optimisation, nor is the halting pattern of each train relation. We currently do not impose temporal
spreading of alternative trains. These constraints are usually enforced to limit the inter-departure times and reduce the
waiting times in the station for some categories of departing passengers. We prefer to impose temporal spreading of
alternative trains in a softer way via the objective function in future research.

Minimal running times are calculated by the infrastructure manager based on the relevant input parameters: train
material (performance of locomotive(s), load of car(s)), track parameters (slope, curvature) and this for the worst case
value of all parameters, giving the longest time amongst all parameter values. To not underestimate the minimum,
Infrabel adds an additional 5% to this longest time. This result is used as ride minimum time. The minimum dwell
time per stop of each train is also specified by the operator. We assume a minimum of 3 minutes for all transfers.
This is a parameter that can be further tuned to stations when walking times between station platform tracks become
available. The minima required for ride, dwell, transfer, headway and turn-around activities are given as multiples of
6 seconds. All supplements in our timetable for all these activities are modelled as continuous variables. However,
due to all minima being specified as multiples of 6 seconds, and the presence of cycles in the timetable graph, many
supplements also take values of multiples of 6 seconds.

When a unit of rolling stock is serving a relation in one direction and also the relation in the opposite direction,
a turn-around edge is added to our graph, creating a minimum turn-around time requirement. When this is not
the case, we suppose that another rolling stock unit can serve the opposite relation, but our model does not decide
if this is possible. The minimal turn-around time in our optimisations was set to 4 minutes. This is the default
initial minimum value which Infrabel assumes for normal turn-around operations. Some trains, train drivers or train
operator companies may demand more turn-time and for these cases this parameter can be changed easily in our
model. Decisions on which train-sets serve which relations in both directions are taken by the train operator company
and this information is typically not fully available to the infrastructure company. Full vehicle allocation is performed
by the train operator after timetabling. The cases where the same train set serves both directions of a relation, are
known to the operator and not the infrastructure company. For these cases, a minimal turn-around time chosen by the
operator and not known to the infrastructure company is used. When this data is available, our model could be run
again with this complete information, but this time by the train operator company. There is no reason to expect that
the performance of our model would then significantly degrade.

We do not make a distinction between intermediate, transfer and end stations. Our model is general enough to treat
any station in the same way and models all transfers in every station, whenever they can occur, meaning whenever
two trains stop in the same station, irrespective of their - yet unknown - arrival and departure times.

A train can experience a knock-on delay (secondary delay) caused by a delay of the train in front of it. To
be able to estimate these secondary delays between trains, we need an estimate of the primary delays as a known
input to our system. Measured total delays are the sum of the primary and the secondary delays. Primary delays
are timetable independent, called exogeneous, while secondary delays are timetable dependent (Sun et al., 2014),
called endogeneous. However, since we currently lack the data in Belgium to separate the measured total delays
into primary and secondary delays, we have to resort to another method of estimating primary delays. We currently
suppose primary delay distributions of each separate activity (ride, dwell, transfer) to be independent and to have an
average proportional (a = 2%) to its activity minimum time.

3. Optimality: Model Objective Function

Our approach to optimise a timetable for passengers was first described in Sels et al. (2011b). It consists of the
two steps we call reflowing and retiming. In the reflowing step we determine the number of passengers in each train
on each part of the network (Sels et al., 2011b). This information is used in the objective function for the retiming
step, also known as timetabling.

We will only give a qualitative description of our objective function, as the main focus of this paper is the derivation
of the PESP constraints of our model. As derived formally in detail in Sels et al. (2013b) and Sels et al. (2013a), our



objective function consists of the sum of the expected passenger time for each edge in the event activity graph G(V, E)
that corresponds to a passenger activity. So, for each ride, dwell and transfer edge we model an expected passenger
time. We express this expected passenger time of an edge as a function of its minimum time and its added supplement
time. The shape of this function mainly depends on the expected primary delay distribution and consequently, so does
the supplement that should be ideally added. The scale of this function depends on the number of passengers involved.
This indicates the relative importance of the expected passenger time of one edge compared to that of another and
these are balanced by the objective function.

As an example, the expected transfer cost function of a transfer supplement time, is a U-shaped function, with a
typical minimum value around 3 to 6 minutes, depending on primary delays. This is the case because for this range of
supplements, the trade-off of expected transfer time for all cases of a succesful versus all cases with a missed transfer
is minimal. Probabilities of these cases are calculated from the expected primary delays and are correctly taken into
account in this trade-off. The penalty for missing a transfer is the time is takes passengers to wait for the alighting
train one hour later.

For the primary delays, we assume negative exponential distributions which is motivated by Goverde (1998b) and
Yuan (2006) and is also common practice (Vansteenwegen and Van Oudheusden, 2006; Kroon et al., 2006). These
distributions have an average (=expected value) that can be set to a certain fixed percentage a of the minimum time for
that activity. This average can in theory be determined by inspecting logs of trains as they are running in the current
timetable. This has been described by Goverde and Hansen (2000) and Daamen et al. (2009) for the Dutch and by
Labermeier (2013) for the Swiss infrastructure. For now, we assume the same value of a for all ride, dwell and transfer
edges, for all trains and for all tracks. The value of a is typically chosen in the range of 1% to 5% (Goverde, 1998a).

As for secondary delays, or knock-on delays, our model already contains the graph edges associated to these.
Indeed, they are the same edges as the headway edges, temporally separating pairs of trains that use the same infras-
tructure resource. So for each headway edge, we also add a term in the objective function that represents the knock-on
time or secondary delay that passengers on the second train may experience in case the first train is delayed. In our
model, as derived in Sels et al. (2013a), this time depends on the delay distributions of both trains and on the number
of passengers on the second train. Obviously, the total knock-on time is proportional to the number of passengers on
the second train. Also, the expected knock-on passenger time forms a decreasing function of the train separating sup-
plement si, j, since the higher the separation, between two trains i and j, the lower the expected knock-on delay. Figure
1 shows an example of a knock-on delay cost function. The horizontal axis shows the supplement between 0 and 57
minutes and on the vertical axis the green curve is the actual cost function. The red piecewise linear approximation of
it is used in our MILP model.

Figure 1: Knock-On Delay Cost Function

This concludes our qualitative discussion of the objective function of our PESP MILP model representing the
timetabling problem. In the next sections, we derive all constraints for this model.

4. Feasibility: Mandatory Model Constraints

In section 4.1, we define our graph of train and passenger activities and then introduce some notation in section
4.2. This allows us to derive all constraints in sections 4.3, 4.4 and 5. Note that all notation is summarised in table 2
in section 6 for quick reference.



4.1. Definition of Graph, Vertices and Edge Types

We consider train and passenger activities. We set up a directed graph G(V, E) with vertex set V and edge set E.
Every vertex represents an arrival or departure of a train in the timetable. Every edge is an activity of a train or/and of
passengers. Passenger activities are ride, dwell and transfer. Train activities without passengers are of one type only:
turn-around. The respective edge sets are called Er, Ed, Etr and Eta. We also introduce the set Ehw of headway-edges.
Such an edge always contains a headway constraint, indicating that a pair of trains should be separated by a minimum
time. Whenever a headway edge is modelled, we also model a knock-on delay on the same edge, which implies an
expected passenger knock-on delay term in our objective function. Primary activities are activities that are related to
only one train. We call the set of primary activity edges E′ = Er ∪ Ed. Secondary activities are activities that occur
between two trains. We call E′′ = Etr ∪ Ehw ∪ Eta. It holds that E = E′ ∪ E′′.

4.2. Function Notation

In the following sections, we will need the following notation. The type of an edge is either ride, dwell, transfer,
headway (=knock-on) or turn-around. We use ¬ to mean boolean negation. We also use the following functions on a
graph G(V, E):
i : E → V so that i(e) equals the unique ’in’ vertex of edge e (source) and
o : E → V so that o(e) equals the unique ’out’ vertex of edge e (destination),
− : E → E so that −e equals the unique inverse edge of edge e, −e is defined by o(−e) = i(e) ∧ i(−e) = o(e).
∀t ∈ {r, d} : it : V → E so that it(v) equals the unique type-t-edge that ends in vertex v and
∀t ∈ {r, d} : ot : V → E so that ot(v) equals the unique type-t-edge that starts in vertex v,
∀t ∈ {r, d} : it : E → E so that it(e) equals the unique type-t-edge that precedes edge e and
∀t ∈ {r, d} : ot : E → E so that ot(e) equals the unique type-t-edge that succeeds edge e.
Note that the word unique here, means that no two edges can satisfy the mentioned property and so at most one result
can be returned by each of these functions. It is possible that no single edge satisfies the properties of the function
definition. For example, ir(v0) where v0 corresponds to any vertex in the station where a train starts is not defined. The
set of results of the function is then the empty set. So, for example, in a constraint generation context, no constraint
will be generated for the occurrence ir(v0). Also remark that, we use the same function name it both from the domain
V and from the domain E. From the type of the argument to it, it will be clear which function is meant. The same
holds for ot. Lastly, note that for t ∈ {tr, ta, ko}, so for secondary edges, it and ot are not defined. Indeed multiple ’in’
or ’out’ edges could then typically result.
¯ : Ehw → Ehw so that e equals the unique opposite headway edge from train 2 to 1 when e goes from train 1 to 2.

For two trains riding in the same direction on an open track, a headway edge goes from the end of a ride activity
of train 1 to the end of a ride activity of train 2 or goes from the beginning of a ride activity of train 1 to the beginning
of a ride activity of train 2. So, for these headway edges e we can define its opposite headway edge e by its vertices
as ∀e ∈ Ehw : i(e) = o(e) ∧ o(e) = i(e).

For two trains riding in the opposite direction on a single track, firstly, a headway edge goes from the end of a
train 1 ride activity to the beginning of a train 2 ride activity. So, for these headway edges e we can define its opposite
headway edge e by its vertices as ∀e ∈ Ehw : i(e) = o(or(e)) ∧ o(e) = i(ir(e)). Note that e, just like e, will go from an
end of ride vertex to a beginning of ride vertex.

For two trains riding in the opposite direction on a single track, secondly, due to the cyclical nature of our schedule,
we also need to add headway edges between the beginning of a ride edge of train 2 to the end of the ride edge of
(actually the cyclically next occurrence of) train 1. Definition of opposite edges is slightly more involved: ∀e ∈ Ehw :
i(e) = i(ir(i(e))) ∧ o(e) = o(or(i(e))).

Note that for all headway edges, we require a headway of 3 minutes, both for same direction and opposite direction
trains. These 3 minutes are a usual approximation of what is considered safe in many countries. If long trains operate
at lower speed in interlocking areas and the set-up of routes is done manually, more headway time may be required.
Considering these cases requires more microscopic data than directly available to us. In the future, we hope to extend
our model with station and train-couple specific minimum headway times. We do not directly consider extra time
corresponding to the passing time for the length of a train in our macroscopic timetabling. We suppose that these
times are small since trains are riding fast outside stations. If this is a concern, the 3 minutes minimal headway time
can be increased.



¯ : Etr → Etr so that e equals the unique opposite transfer edge from train 2 to 1 when e goes from train 1 to 2,
in the same station. A transfer edge however, goes from the end of a ride activity of train 1 to the beginning of
the ride activity of train 2. So, for a transfer edge e we must define its opposite transfer edge e by its vertices as
∀e ∈ Etr : i(e) = i(id(o(e))) ∧ o(e) = o(od(i(e))).

4.3. Mandatory Constraints

The following constraints are mandatory, meaning each constraint has to be part of our model to guarantee that
each solution is a valid timetable.

4.3.1. Edge Constraints (Intra-Edge Constraints)
Since each edge e′ ∈ E′ represents an activity, and each secondary edge e′′ ∈ E′′ a time difference with an enforced

minimum, all e ∈ E = E′ ∪ E′′ have a begin time be, minimum duration time me, supplement time se and end time ee.
So we add the obvious constraints to our model:

∀e ∈ E : be + me + se = ee (2)

In our model, all be and se are variables that have to be determined by the solver and all ee are expressions that are
derived by equations (2) by the solver. The me are constants that are fixed for our model. For a ride edge, me is the
minimum ride time that has been typically calculated by the infrastructure management company, taking into account
train and infrastructure properties. For a dwell edge, me is the minimum dwell time that has typically been decided by
the operator, considering minimal necessary times for passengers to embark on or alight from a train. For a transfer
edge, we currently set me to three minutes, as we consider this as generally sufficient for the walking duration of
passengers between the arrival time of their first train and the departure time of their second train. Note that the solver
for our model, certainly for transfers taken by many passengers, will typically add some minutes for the supplement
se to make the passenger transfer robust against transfer delays. For a turn around edge, we take me equal to four
minutes as this is the preference of Infrabel’s main operator, NMBS. For a knock on edge, me is set to three minutes
as this is considered minimal but safe by Infrabel.

4.3.2. Node Constraints (Inter-Edge Constraints)
We define T as the period of our cyclic timetable. If i(e) is the in vertex of the edge e and o(e) its out vertex, it

then holds that
∀o(e0)=i(e1)(e0, e1) ∈ E′ × (E′ ∪ E′′) : ee0 = be1

∀o(e0)=i(e1)(e0, e1) ∈ E′′ × E′ : ee0 + de0 · T = be1 .
(3)

where, de0 is an integer decision variable, defined for secondary edges e0 ∈ E′′ only. Consider a transfer edge e.
The idea is that, if the equations (3) that contain a variable de hold, then there is a valid transfer between some train
instance of hourly train series t1 and some instance of hourly train service t2. Since both train services occur every
hour, it follows that there is also a valid transfer from every train instance from t1 to every train instance from t2, with
the same values for me and se. The same reasoning holds for all other secondary edge types. So the exact integer value
of de does not matter much for feasibility. Peeters (2003) explains though, that its allowed range affects solver time.
Section 4.3.4 explains our range choices for our integer variables.

The equations ∀o(e0)=i(e1)(e0, e1) ∈ E′′ × E′′ : ee0 + de0 · T = be1 for the set-product E′′ × E′′ are not needed, since
every secondary edge e ∈ E′′ in our graph, always occurs between the end and the beginning of a primary edge, so the
constraints present in the constraints (3) already fix their begin and end times. Not adding the constraints for E′′ × E′′

saved us some model setup time, and more importantly, also significant model solver time.

4.3.3. General Bounds on Continuous Variables
We define δ as the (smallest) time resolution unit of our system. For both primary and secondary supplements we

allow the range se ∈ [0,T −max(me, δ)]. This guarantees that the length of a primary edge e being me + se belongs to
the interval [me,T − max(0, δ − me)]. Supplements of primary edges can be freely chosen. However secondary edges
have to fit between them, so their lengths me + se + de · T are constrained by the difference between the vertices on
primary edges it connects. One can see that any necessary length that can occur in our system, can be constructed by



this expression. Indeed all edge lengths in our system will be (positive or negative) multiples of δ. So, summarised,
we add the bounds

∀e ∈ E : 0 ≤ se ≤ T − max(me, δ) (4)

and unlike tighter bounds, these will never cause infeasibilities.

4.3.4. General Bounds on Integer Variables
Each integer variable de0 occurring in equations (3) represents the difference between the index i1 of the train in

train series t1 and the index i2 of the train in train series t2. We plan all trains, complete from begin time hlo hours to
end time hhi hours. This means that the range of a difference of two arbitrary times in this interval is between (hlo−hhi)
hours and (hhi − hlo) hours, so the range for any de on a secondary edge, which always indicates such a difference of
time, is

∀e ∈ E′′ : (hlo − hhi) ≤ de ≤ (hhi − hlo). (5)

Because currently all our selected trains are planned between 6am and 11am, we have an interval [−5,+5] for each
de. In some cases, as we will see in sections 4.4.1, 4.4.2, 4.4.3, 5.1, 5.3 and 5.4, these bounds will still be tightened.

4.3.5. All Trains Start in the First Hour
To make sure that every train is scheduled in every hour, we require that the first ride activity of each train should

start in the first hour of the time interval we plan all trains in. The following constraints are added to the model

∀¬∃id(e)e ∈ Er : hlo · T ≤ be < (hlo + 1) · T, (6)

where ¬ means negation and ∃id(e) means that there exists a dwell predecessor edge to the edge e. For ride edges
the whole condition only evaluates to true for the first ride edge of each train service.

4.3.6. All Passing Supplements are Zero
We define the function s : Ed → {true, f alse} so that ∀e ∈ Ed : s(e) is true if dwell edge e represents a stopping

activity and false if it represents a passing activity. In case a train passes a station, the minimum dwell time me is zero
and we also set the corresponding dwell supplement to zero:

∀¬s(e)e ∈ Ed : se = 0. (7)

Note that for any dwell activity that corresponds to a train that does not stop, no transfers to or from this train can
exist. So we also do not define transfers for such dwell activities. For each pair of trains that stop in a station, we
define transfers between them in both directions.

4.4. Odijks Rule for Integers Variables of Cycle Edges: Feasibility and Bounds
Before we go on we need to present two equations, derived by Odijk (1996). These concern constraints defined

on undirected cycles of our graph. In each cycle, we make a weighted sum of edge lengths, traversing all its edges in
a chosen loop direction. If we follow an edge e+ pointing in this loop direction (e+ ∈ c+), we add its length. If we
follow an edge e− pointing against this loop direction (e− ∈ c−) we subtract its length. The result must be 0. In each
undirected cycle c, it holds that

∀c ∈ C(G) :
(∑

e∈(c+∩E′) me + se

)
+

(∑
e∈(c+∩E′′) me + se + de · T

)
=

(∑
e∈(c−∩E′) me + se

)
+

(∑
e∈(c−∩E′′) me + se + de · T

)
.

(8)

Consider a graph G = (V, E, l, u) of vertices V , activity-edges E, a vector l of integer lower bounds for the lengths
of all edges and a vector u of integer upper bounds for the lengths of all edges. Odijk (1996) proved from equation
(8) that a PESP instance defined by G = (V, E, l, u) and the set of all cycles C(G) and cyclic period T is feasible if and
only if

Lc =
⌈

1
T
(∑

e∈c+ le −
∑

e∈c− ue
)⌉
,

∀c ∈ C(G) : ∀e ∈ c′′ : ∃de ∈ Z : Lc ≤ Mc ≤ Uc,where Mc = −
(∑

e∈c+ de −
∑

e∈c− de
)
,

Uc =
⌊

1
T
(∑

e∈c+ ue −
∑

e∈c− le
)⌋
.

(9)



Here c′′ = c ∩ E′′ is the set of secondary edges of c. We will use equation (9) several times in sections 4.4.1 up
to 5.5 to derive tighter bounds on integer decision variables and thereby reduce solver times. Note that Odijk actually
defines a vector p where pe = −de,∀e ∈ E′′. In equations (8), +de would be replaced by −pe then as well.

Equations (8) and (9) together ensure that the total cycle duration is a multiple of T . One can see that this property
is a necessary condition for any cycle in the system, if after some multiple n of T , the schedule is to be repeated. The
question as to in how few multiples n of T the schedule can be repeated is not answered by the resulting values of
me, se and de alone, but also depends on the available train resources. More specifically, for a cycle c that is carried
out by rc available trains of the same train relation, and takes time nc · T , the lowest possible time tc to repeat it is
tc =

⌈
nc
rc
· T

⌉
. So for the whole schedule, its minimum repeat time is the smallest common multiple over all tc over all

cycles that are carried out by a single train set. If one also wants to ensure that all potential transfers between all train
pairs take at most time T , one has to repeat every train service every time T by ensuring rc = nc.

4.4.1. Separate and Forbid Reordering of Same Direction Trains on the Same Open Track Section
Consider the situation shown in the left half of Figure 2. A pair of trains rides on the same open track section

in the same direction. The headway time needs to be respected, both between the times that the trains enter and the
times that they leave the resource. As described before, in our graph, for these train pairs and at the corresponding
ride edges, we added headway edges both between the beginnings of these pairs of corresponding ride edges and also
between the endings of these pairs of corresponding ride edges, and this in both directions. Bottom left, we see that

dwell
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Figure 2: Mandatory Cycles for train pairs riding in same direction and in opposite direction on the same track.

a trapeze shaped cycle is formed with two upwards pointing headway edges and two ride edges. The set of all these
cycles is defined by a condition-definition-function cd(hl; ru, rd, hr). Here, hl stands for the left headway time edge
(knock-on edge), ru stands for the upper ride edge, rd for the down ride edge, and hr stands for the right headway time
edge. In the definition of cd(hl; ru, rd, hr), we specify how we calculate the edges ru, rd and hr, if they exist. Whenever
we can derive all edges ru, rd and hr, we will formulate a constraint over these edges. The condition under which all
edges can be derived is

cd(hl; ru, rd, hr) ≡ hl ≺ hl :
∃ru ∈ Er : ru = or(o(hl)) :
∃rd ∈ Er : rd = or(i(hl)) :
∃hr ∈ Ehw : hr = ehw(o(rd), o(ru))

(10)

Any condition-definition-function is implemented in software as a series of nested if-statements. For example, for
equation (10), ’if (hl ≺ hl)’ will restrict the inner body to cases where (hl ≺ hl) holds. Within this first if-statement,



the next statement will be ’if (∃ru ∈ Er : ru = or(o(hl)))’ and so forth. The condition hl ≺ hl, meaning hl comes
strictly before hl in the ordered list of all edges we keep, is added to avoid that we add symmetric constraints, one
for (hl, hl) and one for (hl, hl), which we think would only deliver similar information to the solver. The expression
∃ru ∈ Er : ru = or(o(hl)) selects the ride edge that starts from the end of the headway time edge hl, if it exists. It
does not exist in the case that this headway edge hl is pointing to the end instead of to the beginning of a ride edge. A
similar expression is added to derive the ride edge rd. Lastly hr is calculated as the unique headway edge between the
end points of the ride edges rd and ru. For the cases where cd(hl; ru, rd, hr) succeeds in defining the three new edges,
it defines a cycle with four edges.

As these small trapeze shaped cycles chl,trap, we get ∀cd(hl;ru,rd ,hr)hl ∈ Ehw : chl,trap = (hl, ru,−hr,−rd). We add the
cycle constraints to our model:

∀cd(hl;ru,rd ,hr)hl ∈ Ehw : (mhl + shl︸   ︷︷   ︸
0≤•<T

+dhl · T ) + (mru + sru︸    ︷︷    ︸
0≤•<T

) − (mhr + shr︸    ︷︷    ︸
0≤•<T

+dhr · T ) − (mrd + srd︸    ︷︷    ︸
0≤•<T

) = 0. (11)

Considering the ranges of terms marked in equation (11), applying Odijks equation (9) to these cycles, gives for
the ranges of the integers: ∀cd(hl;ru,rd ,hr)h ∈ Ehw : −1 =

⌈
0+0−(T−δ)−(T−δ)

T

⌉
≤ dhl − dhr ≤

⌊
(T−δ)+(T−δ)−0−0

T

⌋
= 1. Instead of

adding these bounds, we first also require that there are no reorderings between train 1 and 2. This is formally written
as (

mhl + shl + dhl · T
)

div T =
(
mhr + shr + dhr · T

)
div T, (12)

where ’div’ means integer division. Considering the ranges in equations (11) this is equivalent with dhl = dhr . So, we
enforce in our model:

∀cd(hl;ru,rd ,hr )h ∈ Ehw : dhl = dhr . (13)

4.4.2. Separate and Forbid Reordering of Opposite Direction Trains on the Same Single Open Track Section
Now, consider the situation shown in the right half of Figure 2. A pair of trains rides on the same single track

section in opposite direction. The headway time needs to be respected, between the time that the first train leaves and
the second train enters the track. In our graph, for these opposite train pairs, we added headway edges from end to
beginning of the corresponding ride edges, but also from beginning to end of the ride edges to cover the cyclical train
knock-on relation. Bottom right, we see that a trapeze shaped cycle is formed with two upwards pointing headway
edges and two ride edges. The set of all these cycles is defined by a condition-definition-function,

cd(hl; ru, rd, hr) ≡ hl ≺ hl :
∃ru ∈ Er : ru = or(o(hl)) :
∃rd ∈ Er : rd = ir(i(hl)) :
∃hr ∈ Ehw : hr = ehw(i(rd), o(ru))

(14)

and as small trapeze shaped cycles chl,trap, we get ∀cd(hl;ru,rd ,hr)hl ∈ Ehw : chl,trap = (hl, ru,−hr, rd). We arrive at the
cycle equations:

∀cd(hl;ru,rd ,hr)hl ∈ Ehw : (mhl + shl︸   ︷︷   ︸
0≤•<T

+dhl · T ) + (mru + sru︸    ︷︷    ︸
0≤•<T

) − (mhr + shr︸    ︷︷    ︸
0≤•<T

+dhr · T ) + (mrd + srd︸    ︷︷    ︸
0≤•<T

) = 0 (15)

Considering the ranges of terms marked in equation (15), applying Odijks equation (9) to these cycles, gives for
the ranges of the integers: ∀cd(hl;ru,rd ,hr)h ∈ Ehw : −2 =

⌈
−(T−δ)−(T−δ)+0−(T−δ)

T

⌉
≤ dhl − dhr ≤

⌊
−0−0−(T−δ)−0

T

⌋
= 0. Instead

of adding these bounds, we first also require that there are no collisions between trains 1 and 2 riding in opposite
directions on the same track. This boils down to equation (12) which effectively says that train order on the track
cannot change. Imposing this and considering the ranges in equations (15) this is equivalent with dhl = dhr . So, we
enforce in our model:

∀cd(hl;ru,rd ,hr )h ∈ Ehw : dhl = dhr . (16)



4.4.3. Separate and Forbid or Allow In-Station Reordering based on Infrastructure & Halting Pattern
From the previous section 4.4.1, we know how to forbid reordering of two trains on the same open track section.

We can use the same system for train pairs that cannot overtake each other in a station. This is the case when none of
the two trains makes a stop or also when the station doesn’t have enough platform tracks to allow reordering. When
one train stops and the other does not, the bounds interval of the expression dhl−dhr is different. We define the function
iar : Ed × Ed → {true, false} so that ∀e, e′ ∈ Ed : iar(d) is true if the station infrastructure allows reordering between
the dwell activities e and e′ and false otherwise. Note that, by definition, ∀e, e′ ∈ Ed : iar(e, e′) = iar(e′, e). Currently,
we only allow reordering in stations when (1) these possess at least 4 platform tracks (2 in both directions) and (2)
a switch grid is present. This corresponds to the guideline currently used by the Belgian infrastructure manager. In
Belgium this holds for 150 stations of the 780 stations, so 19% of them. The possibility of reordering will also depend
on whether both trains, just one train or no trains stop or not.
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Figure 3: Optional Cycles for train pairs dwelling in a a station.

Consider only the top part of Figure 3. It shows two station dwell activities and the transfer and headway edges
defined by these. We derive the general bounds on the integer variables of the headway edges. The set of all the cycles
containing the dwell activities of two trains in the same station is defined by another condition-definition-function

cd(hl; du, dd, hr) ≡ hl ≺ hl :
∃du ∈ Ed : du = od(o(hl)) :
∃dd ∈ Ed : dd = od(i(hl)) :
∃hr ∈ Ehw : hr = ehw(o(dd), o(du))

(17)

and as small cycles, we get the trapezes ∀cd(hl;du,dd ,hr)hl ∈ Ehw : chl,trap = (hl, du,−hr,−dd). The corresponding cycle
constraints enforced in our model are

∀cd(hl;du,dd ,hr)hl ∈ Ehw : (mhl + shl︸   ︷︷   ︸
0≤•<T

+dhl · T ) + (mdu + sdu︸    ︷︷    ︸
0≤•<T

) − (mhr + shr︸    ︷︷    ︸
0≤•<T

+dhr · T ) − (mdd + sdd︸    ︷︷    ︸
0≤•<T

) = 0. (18)

Considering the ranges marked in equation (18), applying Odijks rule here gives ∀cd(hl;du,dd ,hr )h ∈ Ehw : −1 =⌈
(0)+(0)−(T−δ)−(T−δ)

T

⌉
≤ dhl − dhr ≤

⌊
(T−δ)+(T−δ)−(0)−(0)

T

⌋
= 1, as the ranges of the integers. The specific cases of reordering



or not reordering now will tighten these bounds further, so we first enforce the following narrower intervals:

∀cd(hl;du,dd ,hr )h ∈ Ehw : if (¬iar(du, dd)) : −0 ≤ dhl − dhr ≤ +0,
else if (¬s(du) ∧ ¬s(dd)) : −0 ≤ dhl − dhr ≤ +0,
else if (s(du) ∧ ¬s(dd)) : −1 ≤ dhl − dhr ≤ +0,
else if (¬s(du) ∧ s(dd)) : −0 ≤ dhl − dhr ≤ +1,
else if (s(du) ∧ s(dd)) : −1 ≤ dhl − dhr ≤ +1.

(19)

We believe that equations (19) represent the tightest bounds on the integer d-variables that can be calculated.
Since some other publications do not explicitly mention the ranges of integer variables in their models, comparison
with other work is hard. This completes our derivation of all mandatory constraints that guarantee that our model will
produce only valid timetables.

5. Computation Speed: Optional Model Constraints

In this section, we derive optional constraints which are only enforced to reduce solver times. Apart from the
feasibility criterion in equation (9) mentioned above, Odijk (1996) also describes the generation of constraints based
on cycles. Even though these cycle-based constraints are in fact linear combinations of the constraints (2) and (3),
they can be helpful in practice to lower solver times (Peeters, 2003). Nachtigall (1994) showed that it is sufficient to
impose the cycle periodicity constraints on a set of cycles which is an integral cycle basis of the whole cycle space.
This means that all cycles in the cycle space are integer linear combinations of the cycles in this integral basis. A
practical algorithm to arrive at such an integral basis, more specifically a strictly fundamental cycle basis, is to first
construct a spanning tree of the graph and then to construct all cycles induced by the edges that do not belong to
that tree. For a general graph, computing one of its spanning trees requires quite some time, but we realised that the
set of primary edges of our graph is very close to a complete spanning tree of our graph and as a consequence each
secondary edge can then simply be used to each induce one cycle. This avoids having to calculate a spanning tree
at all. Using this insight, and after performing many experiments, we arrived at our own cycle sets, concentrating
on secondary edges in our graph. Firstly, we focus on small cycles which contain only a few secondary edges. In
this way few integer variables are present, so that the induced constraints are simple. Secondly, we also focus on
secondary edges where many passengers are present and find a shortest cycle through these edges and generate the
corresponding constraint. The combination of both types of cycle constraints, delivers a model that can be solved
quickly. We describe our chosen cycle set and set of induced constraints in the following sections 5.1 through 5.5.

5.1. Opposite Transfer Pair Induced Small Cycles: Hourglasses

Consider the bottom left part of Figure 3. It shows a part of a graph where two trains stop in a station and transfers
in both directions between these trains occur. Two opposite transfer edges t (from train 1 to train 2) and t (from train 2
to train 1) are always defined between two dwell edges (of train 1 and of train 2) when these both represent a train stop.
We will call du (dwell up) and dd (dwell down), between their respective begin and end vertices, with which a 4-edged
cycle can be formed. For both transfers t and t, the same cycle is formed, so we restrict ourselves to the transfers t for
which t ≺ t holds, where ≺ can be any total order defined on (transfer) edges. The condition-definition-function is

cd(t; du, dd) ≡ ∀t≺tt ∈ Etr :
du = od(i(t)),
dd = od(i(t)),

(20)

which in fact always succeeds in defining the edges du and dd. The opposite transfer-pair induced cycles ct are now
defined as ct = (t,−du, t,−dd). The constraints corresponding with these hourglass cycles which we add to our model
are

∀cd(t;du,dd)t ∈ Etr :
mt + st︸ ︷︷ ︸
0≤•<T

+dt · T − (mdu + sdu︸    ︷︷    ︸
0<•<T

) + mt + st︸ ︷︷ ︸
0≤•<T

+dt · T − (mdd + sdd︸    ︷︷    ︸
0<•<T

) = 0.
(21)

In this equation the minimum dwell times mdu and mdd must be strictly positive, since no transfers are possible on
trains that do not stop. Applying Odijks equation (9) to this hourglass cycle and taking into account the ranges of



terms marked in equation (21), gives ∀t≺tt ∈ Etr : −1 =
⌈

(0)+(0)−(T−δ)−(T−δ)
T

⌉
≤ dt + dt ≤

⌊
(T−δ)+(T−δ)−(0)−(0)

T

⌋
= 1, for the

ranges of the integers. Equations (21) can be rewritten as

∀cd(t;du,dd)t ∈ Etr :
+(dt + dt) · T = +(mdu + sdu︸    ︷︷    ︸

0<•<T

) + (mdd + sdd︸    ︷︷    ︸
0<•<T

) − (mt + st︸ ︷︷ ︸
0≤•<T

+ mt + st︸ ︷︷ ︸
0≤•<T

).
(22)

If we disallow dwell times to become extremely long and suppose that (mdu + sdu )+ (mdd + sdd ) < T , then according
to equation (22), dt + dt can never equal 1. We could then reduce the upper bound to 0, giving

∀t≺tt ∈ Etr : −1 ≤ dt + dt ≤ 0. (23)

When we imposed the stricter equations (23), solver times reduced significantly. When we further reduce the
bounds interval in (23) from [−1, 0] to [0, 0], we reduce the search space, but cannot guarantee feasibility. Even so, in
practice, we still got solutions returned in all cases, but on average solver times increased. Guaranteed feasibility and
lower solver times are two good reasons to keep the [−1, 0] interval in (23).

5.2. Opposite Dwell-Begin-Headway Induced Small Cycles: Forward Triangles
The bottom middle part of Figure 3 also indicates the headway edges. Here, we only consider headway edges that

connect the beginnings of two dwell edges. This condition can be formulated as the restrictions ∃du ∈ Ed : du = od(h)
and ∃dd ∈ Ed : dd = od(h). We also restrict ourselves to the cases where both trains stop and transfers between them
occur. The condition-definition-function becomes

cd(h; du, tu, dd, td) ≡ h ≺ h :
∃du ∈ Ed : du = od(h) : ∃tu ∈ Etr : tu = etr(i(h), o(du)) :
∃dd ∈ Ed : dd = od(h) : ∃td ∈ Etr : td = etr(o(h), o(dd)).

(24)

Altogether, this gives the definition of ch,lut (a left up triangle) and ch,ldt (a left down triangle) as defined cycles for
the following headway edges h:

∀cd(h;du,tu,dd ,td)h ∈ Ehw :
{

ch,lut = (h, du,−tu)
ch,ldt = (h, td,−dd). (25)

The constraints corresponding with these forward triangle cycles are

∀cd(h,;du,tu,dd ,td)h ∈ Ehw :


(mh + sh︸  ︷︷  ︸

0≤•<T

+dh · T ) + (mdu + sdu︸    ︷︷    ︸
0≤•<T

) − (mtu + stu︸   ︷︷   ︸
0≤•<T

+dtu · T ) = 0

(mh + sh︸  ︷︷  ︸
0≤•<T

+dh · T ) + (mtd + std︸   ︷︷   ︸
0≤•<T

+dtd · T ) − (mdd + sdd︸    ︷︷    ︸
0≤•<T

) = 0. (26)

Applying Odijks equation (9) to the cycles lut and ldt and taking into account the ranges of terms marked in
equation (26), gives for the ranges of the integers

∀cd(h;du,tu,dd ,td)h ∈ Ehw :

 0 =
⌈

(0)+(0)−(T−δ)
T

⌉
≤ dtu − dh ≤

⌊
(T−δ)+(T−δ)−(0)

T

⌋
= 1

−1 =
⌈

(0)−(T−δ)−(T−δ)
T

⌉
≤ dtd + dh ≤

⌊
(T−δ)−(0)−(0)

T

⌋
= 0.

(27)

We add equations (26) as well as (27) as constraints to the model.

5.3. Opposite Dwell-End-Headway Induced Small Cycles: Backward Triangles
Similarly to the previous section, the bottom right part of Figure 3 now shows headway edges that connect the

beginnings of two ride edges and we define

cd(h; du, tu, dd, td) ≡ h ≺ h :
∃du ∈ Ed : du = id(h) :
∃tu ∈ Etr : tu = etr(i(du), i(h)) :
∃dd ∈ Ed : dd = id(h) :
∃td ∈ Etr : td = etr(i(dd), o(h))

(28)



and as small cycles, the two backward triangles

∀cd(h;du,tu,dd ,td)h ∈ Ehw :
{

ch,rut = (h,−du, tu)
ch,rdt = (h,−td, dd).

The constraints imposed corresponding with these backward triangle cycles are

∀cd(h;du,tu,dd ,td)h ∈ Ehw :


(mh + sh︸  ︷︷  ︸

0≤•<T

+dh · T ) − (mdu + sdu︸    ︷︷    ︸
0≤•<T

) + (mtu + stu︸   ︷︷   ︸
0≤•<T

+dtu · T ) = 0

(mh + sh︸  ︷︷  ︸
0≤•<T

+dh · T ) − (mtd + std︸   ︷︷   ︸
0≤•<T

+dtd · T ) + (mdd + sdd︸    ︷︷    ︸
0≤•<T

) = 0. (29)

Considering the ranges of terms marked in equation (29), applying Odijks equation to these cycles rut and rdt,
gives as imposed ranges of the integers

∀cd(h;du,tu,dd ,td)h ∈ Ehw :

 −1 =
⌈

(0)−(T−δ)−(T−δ)
T

⌉
≤ dtu + dh ≤

⌊
(T−δ)−(0)−(0)

T

⌋
= 0

0 =
⌈

(0)+(0)−(T−δ)
T

⌉
≤ dtd − dh ≤

⌊
(T−δ)+(T−δ)−(0)

T

⌋
= 1.

(30)

5.4. Opposite Headway Edges Integer Constraints
Every headway edge h ∈ Ehw between train 1 and 2 has an opposite headway edge h ∈ Ehw from train 2 to train

1. The two-edged cycles formed by two opposite headways are ∀h≺hh ∈ Ehw : ch,opp = (h, h) and the corresponding
constraints which we enforce are

∀h≺hh ∈ Ehw : (mh + sh︸  ︷︷  ︸
0<•<T

+dh · T ) + (mh + sh︸  ︷︷  ︸
0<•<T

+dh · T ) = 0. (31)

Note that minimal headways mh and mh are strictly positive and sh and sh are zero or positive. This implies the
bounds in equations (31). Odijks equation now gives

∀h≺hh ∈ Ehw : −1 =
⌈

(δ)+(δ)−(T−δ)−(T−δ)
T

⌉
≤ dh + dh ≤

⌊
(T−δ)+(T−δ)−(δ)−(δ)

T

⌋
= 1. (32)

In addition to Odijks rule, we see that the equation equivalent to (31)

∀h≺hh ∈ Ehw : (dh + dh) · T = −(mh + sh︸  ︷︷  ︸
0<•<T

+ mh + sh︸  ︷︷  ︸
0<•<T

)

︸                     ︷︷                     ︸
<0

(33)

must have a strictly negative (integer) solution for (dh + dh), so together with (32) this results in the improved tighter
bounds, which we add to our model:

∀h≺hh ∈ Ehw : dh + dh = −1. (34)

5.5. Dijkstra Generated Cycle Constraints
Over our graph, for every transfer edge e, we define a cycle ce induced by that edge. It is calculated as the

concatenation of itself with the edge path p that starts at o(e) and ends at i(e) and has minimal edge length, based on
minima of edges only, so supposing the supplements are zero. We calculate the shortest path on the implied undirected
version of our directed graph. So ce = e ⊕ p : p = shortestPath(o(e), i(e)), where ⊕ stands for the concatenation of
subsequent edges. We calculate p by a modified Dijkstra algorithm, which includes a priority queue for speedup. We
did this but only for transfer edges. When also doing this on headway edges we did not notice any reduction in solver
times. As do Odijk (1996) and Peeters (2003), we define c+ and c− as the subsets of edges in cycle c with opposite
orientations. We add the following constraints:

∀t ∈ Etr :
∑

e∈(c+
t ∩E′) me + se +

∑
e∈(c+

t ∩E′′) me + se + de · T =∑
e∈(c−t ∩E′) me + se +

∑
e∈(c−t ∩E′′) me + se + de · T.

(35)



Since (9) is a necessary condition for feasibility, we could try and impose, ∀t ∈ Etr :
⌈

1
T

(∑
e∈c+

t
le −

∑
e∈c−t ue

)⌉
≤

−
(∑

e∈c+
t

de −
∑

e∈c−t de

)
≤

⌊
1
T

(∑
e∈c+

t
ue −

∑
e∈c−t le

)⌋
, as companion equations to equations (35), without reducing the

solution space. However, when we did so, solver times did not further reduce, so we removed them again.
For efficiency, the modified Dijkstra algorithm was parallellised both on the core-level (using openMP) and the

machine-level (using openMPI). OpenMP (multi-platform shared-memory parallel programming) and openMPI (mes-
sage passing interface) are open source, portable C++ (and Fortran) libraries that are created to allow programmers
to parallellise their sequential code over respectively different cores per processor and over different machines on
the network. This behaviour is obtained by inserting simple ’pragma’-statements, for example around for loops to
parallellise these. This then directs the compiler to generate code that will execute Dijkstra algorithms for different
OD pairs concurrently on all available cores and machines.

5.6. Limiting the Set Etr

For description of our MILP model, we define the set Etr as only containing transfer edges defining a passenger
flow occurring on them of at least fmin. Once this model is solved, the timing of each transfer edge with lower flow
than fmin can be derived from the timing of the two ride edges which it connects. Although these smaller flows
of a transfer edge are not taken into account in our optimisation model, they are used during the simulation based
evaluation of the new timetable that results from our optimisation model. We currently set fmin to 10 passengers per
hourly transfer. This brought down solver time of our model from many hours to about two hours. When we set fmin

to 50, we typically obtain one hour as solver time, but then the evaluation shows that almost no travel time reduction
is obtained. The reason is that what is gained in the optimisation of the bigger flows, is almost entirely lost in the
non-considered small flows again.

6. Model Summary

The notation used is defined in Table 2. In the previous sections, we derived the mandatory constraints for our
MILP model as given in Table 3 and the optional, solver speed improving constraints in Table 4. Thanks to the natural,
large ranges of all supplement variables, we avoid a cause of infeasibilities that do occur in some other models. We
give proof of this in AppendixA.

Table 2: Notation used. Note that de is defined ∀e ∈ E′′, while be,me, se, ee are defined ∀e ∈ E′ ∪ E′′.
T = cyclic timetable period δ = timetable time resolution
hlo = first hour of schedule hhi = last hour of schedule
E′ = set of primary edges r = ride be = begin time of e
E′ = Er ∪ Ed d = dwell me = minimum time of e
E′′ = set of secondary edges hw = headway se = supplement time of e
E′′ = Etr ∪ Ehw ∪ Eta ta = turn-around ee = end time of e
E = set of all edges tr = transfer de = integer variable for e
E = E′ ∪ E′′ t = edge type V = vertex set
i(e) = in vertex of e it(v) = unique type t inbound edge of vertex v
o(e) = out vertex of e ot(v) = unique type t outbound edge of vertex v
et(v0, v1) = unique type t edge it(e) = unique type t predecessor edge of edge e

from vertex v0 to vertex v1 ot(e) = unique type t successor edge of edge e
s(d) = true iff dwell iar(d0, d1) = true iff station infrastructure allows

activity d is a stop reordering between trains with dwell activities d0 and d1
e is the edge between trains t2 and t1, that is the opposite of the edge e from train t1 to t2
cd(...) functions are condition defining functions that set the conditions under which rules apply and also define names for edges
used in the further expression

7. Results

Compared to our previous papers Sels et al. (2011b, 2013b,a), that focussed on our goal function, this paper
focusses on the constraints. We discuss three main results of our work. Firstly, in section 7.1, we show that our MILP
model avoids a cause of infeasibilities that does occur in other models. Secondly, in 7.2, for the case of all passenger

http://openmp.org/
http://www.open-mpi.org


Table 3: Mandatory constraints, enforced to generate valid timetables. The notation used is described in Table 2.
intra-process constraints: ∀e ∈ E : be + me + se = ee
inter-process ∀o(e0)=i(e1)(e0, e1) ∈ (E′, E′ ∪ E′′) : ee0 = be1
connection constraints: ∀o(e0)=i(e1)(e0, e1) ∈ (E′′, E′) : ee0 + de0 · T = be1
continuous variable bounds: ∀e ∈ E : 0 ≤ se ≤ T − max(me, δ).
integer variable bounds: ∀e ∈ E′′ : (hlo − hhi) ≤ de ≤ (hhi − hlo)
all trains start in 1st hour: ∀¬∃id (e)e ∈ Er : hlo · T ≤ be < (hlo + 1) · T
passing supplements are 0: ∀¬s(e)e ∈ Ed : se = 0
separate same cd(hl; ru, rd , hr) = hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl)) :
direction trains ∃rd ∈ Er : rd = or(i(hl)) : ∃hr ∈ Ehw : hr = ehw(o(rd), o(ru)).
on the same open ∀cd(hl ;ru ,rd ,hr )hl ∈ Ehw : ((mhl + shl + dhl · T ) + (mru + sru )
track section: = (mhr + shr + dhr · T ) + (mrd + srd ))
and forbid reordering: ∧(dhl = dhr )
separate opposite cd(hl; ru, rd , hr) = hl ≺ hl : ∃ru ∈ Er : ru = or(o(hl)) :
direction trains ∃rd ∈ Er : rd = or(i(hl)) : ∃hr ∈ Ehw : hr = ehw(i(rd), o(ru)).
on the same single ∀cd(hl ;ru ,rd ,hr )hl ∈ Ehw : ((mhl + shl + dhl · T ) + (mru + sru )
open track section: −(mhr + shr + dhr · T ) + (mrd + srd ) = 0))
and forbid reordering: ∧(dhl = dhr )
forbid or allow cd(hl; du, dd , hr) = hl ≺ hl : ∃du ∈ Ed : du = od(o(hl)) :
reordering ∃dd ∈ Ed : dd = od(i(hl)) : ∃hr ∈ Ehw : hr = ehw(o(dd), o(du)).
within a station ∀cd(hl ;du ,dd ,hr )h ∈ Ehw : ((mhl + shl + dhl · T ) + (mdu + sdu )
depending on = (mhr + shr + dhr · T ) + (mdd + sdd ))
infrastructure: ∧ (if (¬iar(du, dd)) : −0 ≤ dhl − dhr ≤ +0,
& halting patterns: else if (¬s(du) ∧ ¬s(dd)) : −0 ≤ dhl − dhr ≤ +0,

else if (s(du) ∧ ¬s(dd)) : −1 ≤ dhl − dhr ≤ +0,
else if (¬s(du) ∧ s(dd)) : −0 ≤ dhl − dhr ≤ +1,

else if (s(du) ∧ s(dd)) : −1 ≤ dhl − dhr ≤ +1)

Table 4: Optional constraints, only enforced to lower solver times. The notation used is described in Table 2.
opposite transfers induced ∀t≺tt ∈ Etr : ((mt + st + dt · T ) + (mt + st + dt · T )
small cycles (hourglasses): = (mdu + sdu ) + (mdd + sdd )) ∧ (−1 ≤ dt + dt ≤ 0)
opposite cd(h; du, tu, dd , td) = h ≺ h : ∃du ∈ Ed : du = od(h) :
dwell-begin-headway ∃tu ∈ Etr : tu = etr(i(h), o(du)) :
induced small cycles ∃dd ∈ Ed : dd = od(h) : ∃td ∈ Etr : td = etr(o(h), o(dd)).
(forward triangles): ∀cd(h;du ,tu ,dd ,td )h ∈ Ehw : ((mh + sh + dh · T ) + (mdu + sdu )

= (mtu + stu + dtu · T )) ∧ (0 ≤ dtu − dh ≤ 1)
∧((mh + sh + dh · T ) + (mtd + std + dtd · T ) = (mdd + sdd ))

∧(−1 ≤ dtd + dh ≤ 0)
opposite cd(h; du, tu, dd , td) = h ≺ h : ∃du ∈ Ed : du = id(h) :
dwell-end-headway ∃tu ∈ Etr : tu = etr(i(du), i(h)) :
induced small cycles ∃dd ∈ Ed : dd = id(h) : ∃td ∈ Etr : td = etr(i(dd), o(h)).
(backward triangles): ∀cd(h;du ,tu ,dd ,td )h ∈ Ehw : ((mh + sh + dh · T ) + (mtu + stu + dtu · T )

= (mdu + sdu )) ∧ (−1 ≤ dtu + dh ≤ 0)
∧((mh + sh + dh · T ) + (mdd + sdd ) = (mtd + std + dtd · T ))

∧(0 ≤ dtd − dh ≤ 1)
opposite headway ∀h≺hh ∈ Ehw : ((mh + sh + dh · T ) = −(mh + sh + dh · T ))
integer constraints: ∧(dh + dh = −1)
transfer induced ∀t ∈ Etr :

∑
e∈(c+

t ∩E′) me + se +
∑

e∈(c+
t ∩E′′) me + se + de · T

Dijkstra cycle constraints: =
∑

e∈(c−t ∩E′) me + se +
∑

e∈(c−t ∩E′′) me + se + de · T

trains in Belgium, we show that we significantly reduce expected passenger travel time in practice. Thirdly, in 7.5, we
show that we can do so in relatively short solver times.

7.1. Feasibility: A Solution is Always Returned in Practice

Since our model has an objective function that properly penalises the choice of big supplements in a soft yet
passenger optimal way, there is no reason for us to add a hard constraint that restricts supplements to any arbitrary
value lower than T − δ. Other models (e.g. Sparing et al. (2013) and Kroon et al. (2009)) lack an objective function
that automatically restricts all supplements and so have to enforce a more arbitrary upper bound as a hard constraint.



Usually, this upper bound, directly or indirectly, is chosen lower than our T − δ. As a result, they may risk producing
infeasibilities in their model. We believe we have resolved this issue. We indeed notice that, over the last years, in all
optimisation experiments with our model described here, our solver did not report any infeasibility.

7.2. Quality: The Solution has Lower Expected Passenger Travel Time in Practice

We applied our model for all passenger trains in Belgium departing between 7 and 8am in the timetable of March,
13th, 2013. We assume primary delay distributions with an average of 2% of the minimum time on all activities, which
is Infrabel’s current best estimate for morning peak hours. This case is mentioned as the second line of Table 5 and
detailed results are given in Figure 4. All six sub-figures represent the change of some measure of time from before
to after optimisation. The top row represents planned time, the middle row represents linearised expected time, while
the bottom row represents actual expected time (non-linearised). This means that the difference in results between
row 3 and row 2 is entirely due to the difference between the non-linear cost curves (row 3) and our piecewise linear
approximation of it (row 2). Using non-linear optimisation may totally erase these differences, but it is much harder
to solve a non-linear model than our corresponding linear one. Of the two columns, the left column represents total
train time. This is the sum over all hourly trains of the trains total trip time, independent of the number of passengers
on each train. The right column represents time for all daily passenger streams, also the small streams not considered
during optimisation. The colours (blue, yellow, green, orange, red, purple) each stand for a particular activity (ride,
dwell, depart, transfer, arrive, knock-on). There are dark and light versions of some colours (yellow, green, orange,
red, purple). The dark colour indicates minimum times, while the lighter version indicates the supplement times of the
same activity type. The shading with blue lines indicates that these activities (all except knock-on) were convoluted
with ride activities.

Considering planned train time in column 1, row 1, we see a negligible decrease of the total ride+dwell time
supplements from 12.63% to 11.42%. In column 1, row 2, evaluation via the linear cost functions shows a decrease
of 13.21% to 12.40%. Column 1, row 3, shows a very similar decrease from 13.24% to 12.50%. This small difference
between row 2 and 3 indicates that our piecewise linear approximation performs well. It should be noted, however,
that our objective (and objective function) is not about minimising the total train running times (column 1) but it is
about minimising the total passenger travel time in practice (column 2).

Column 2, row 1 of Figure 4, planned passenger time, demonstrates a much larger reduction of the ride+dwell
supplements than in planned train time, from 10.06% down to 2.76%. These are weighted by number of passengers.
This same advantageous larger expected time reduction in column 2 compared to column 1, is also present in the
expected time domains. Indeed, in column 2, row 2, representing evaluation of the linearised cost functions, ride-
dwell supplements go down from 9.88% in the original timetable to 3.77% in our optimised timetable. In column
2, row 3, representing evaluation on the true, non-linear cost functions, supplement percentages go down similarly
from 10.0% to 3.80%. But also for expected knock-on time we reduce time (row 2 (5.93% down to 1.63%) and row
3 (5.06% down to 1.86%)). The decrease of these expected ride, dwell and knock-on times is compensated only
partially by the increase in expected transfer time (row 2 (10.43% up to 16.80%) and row 3 (10.18% up to 17.10%)).
Note that this expected transfer time includes both successful and missed transfers, properly weighted with their
respective probabilities to occur. Our calculations, both during optimisation and during evaluation, assume a penalty
for a missed transfer of 1 hour. Since our timetable is cyclic the same train occurs with the same timing every next
hour. In practice, a passenger could also take another train in the same direction without waiting a full hour. We did not
model this effect. This means that the expected transfer time in our model is conservatively somewhat overestimated.
Since missed transfers are penalised more in our model than in a model that would account for this effect, our model
will generate a timetable that has fewer missed transfers. In column 2, row 2, the net total expected passenger travel
time reduction is 6.03% for the approximate linear cost function evaluation and in row 3 it is still 3.81% for the actual
cost function evaluation. So we conclude that 3.81% is our best prediction for reduction of expected passenger time
for all passenger streams together. The average train passenger may expect this reduction amount in practice when
the optimised timetable is used.

Because the assumed amount of primary delays has an effect on the actual timetable that is generated, we then
varied these primary delay distributions. For each ride and dwell activity we still assumed the same negative expo-
nential type of primary delay distributions, but we varied them by increasing their average (expected value) of a% of
each activity’s minimum time. This average is given in column 1 of Table 5 for cases from a = 1% up to a = 20%.
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Figure 4: Reducing Train Time and Expected Passenger Time from Original to Optimised Timetable as also reported in line 2 of Table 5.



Note that for each value of a, a different timetable will be generated. Also, a value of a = 20% may seem
unrealistically high, but this was chosen to show that our model can keep generating timetables at any value of a. At
first, this may seem surprising if one realises that in some places in Belgium, as in the bottleneck in Brussels-Central
station, leftover capacity is less than 20%. However, the constructed timetable for a = 20% will plan all trains in
an hour, because these are hard constraints of our model. In practice, there will be delays, and the higher the value
of a, the more statistical cases there will be that these trains will in practice not be able to all follow the prescribed
timetable. However, these negative effects are allowed by the model since the penalties on them are only soft penalties
present in the objective function. It remains therefore the responsibility of the user of our tool that not too many trains
are forced to be planned. For example, the UIC 406 norm can be utilised to restrict the capacity consumption of the
input train set to our model. The fact that our model allows scheduling of trains that consume up to 100% capacity
has the advantage that it can also report total expected passenger time of a schedule at 80% and 95% and is likely
to report that the second schedule has a higher total expected passenger time than the first because of its excessively
higher knock-on delays. As such, our tool may be used to explore at which point adding more trains to the schedule
stops being advantageous for passengers and should be discouraged.

Table 5: For (different) primary delay distributions, characterised by their average of a% of minimum dwell and ride times, properties of the
(different) resulting optimised timetable are shown. Missed transfer probability of the original timetable is shown for easy comparison.

resulting major major all all missed
solver MILP flows flows non- flows flows non- transfer

a time gap linearised linearised linearised linearised probability
time time time time original optimised

reduction reduction reduction reduction timetable timetable
% min. % % % % % % %
1 107 83.0 6.25 4.19 5.64 3.58 13.6 2.42
2 123 79.2 6.69 4.48 6.03 3.81 13.9 2.60
3 123 77.0 5.49 3.10 4.85 2.45 14.2 2.31
4 139 74.2 5.00 2.55 4.41 1.94 14.5 2.14
5 128 70.2 5.66 3.19 5.04 2.57 14.8 2.37
6 125 68.8 4.45 1.89 3.91 1.35 15.1 3.44
7 96 67.2 3.64 1.17 3.08 0.61 15.4 2.61
8 117 64.0 4.07 1.60 3.52 1.05 15.7 2.35
9 118 61.0 4.50 1.87 3.96 1.33 16.0 2.31

10 133 59.9 3.74 1.30 3.21 0.78 16.3 1.91
11 126 57.6 3.90 1.26 3.36 0.74 16.6 2.06
12 127 55.2 4.20 1.57 3.63 1.00 17.0 2.68
13 121 53.5 4.32 1.70 3.75 1.13 17.3 2.44
14 130 51.9 4.18 1.57 3.65 1.04 17.6 2.85
15 120 51.8 3.38 0.61 2.85 0.09 17.9 2.92
16 117 49.8 3.74 1.06 3.21 0.56 18.2 2.69
17 100 47.0 4.59 1.60 4.05 1.07 18.5 2.35
18 441 48.9 2.78 0.01 2.31 -0.46 18.8 2.63
19 144 44.9 4.55 1.75 4.03 1.24 19.1 2.87
20 134 44.9 3.97 1.04 3.51 0.58 19.4 2.34

Column 2 and 3 in Table 5 show the solver time and the MILP gap achieved. For all rows, to guarantee a solution
in a short time, the maximum desired MILP gap was set slightly above what was obtained as the gap of the first
returned solution in earlier trials. We ran Gurobi 5.6.3 on a HP Z210 Workstation Xeon CPU E31240 at 3.3GHz with
16GB memory running Microsoft Windows 7 Enterprise. In table 6, we give some numbers that indicate the problem
size that hold for all these cases. This allows comparison to other published models. Our graph contains 196 hourly
trains, 5078 ride edges, 4882 dwell edges, 15495 major transfer edges, 41258 knock-on(=headway) edges and 168
turn-around edges. Our model contains 52067 b and 52067 s decision variables and 52067 e expressions. It has 42107
d integer decision variables, corresponding to one for each secondary edge, and 50481 objective function terms for
major flows of which 41258 terms are functions of 1 s variable and 9223 are functions of 2 s variables. For final
evaluation over all streams, 70909 function terms are added. After pre-solve, which only takes about 5 seconds, our
model contains 165298 rows, 111576 columns and 464064 non-zero elements.

Compared to the timetable currently in operation, our optimised timetables have quite some advantages. Firstly,
they respect all minimum ride- and dwell-times without exception. Secondly, they respect all headway time buffers



Table 6: Problem instance statistics.
# ride edges = 5078 # (continuous) b-variables = 52067

# dwell edges = 4882 # (continuous) s-variables = 52067
# turn-around edges = 168 # (continuous) e-expressions = 52067

# knock-on(headway) edges = 41258 # (integer) d-variables = 42107
# major transfer edges = 15495 # objective function terms for major flows = 50481

# model rows = 165298 # are functions of 1 s-variables = 41258
# model columns = 111576 # are functions of 2 s-variables = 9223

# model non-zero elements = 464064 # function terms in post-optimisation evaluation = 70909

of 3 minutes between all train pairs on the same track section. Thirdly, our calculations show that, over all primary
delay assumptions of Table 5, the average chance of missing a transfer in the current timetable is at least 14.1% while
in our optimised timetable it is at most 3.44%. For the case a = 2% in Table 5, the expected passenger time is 3.81%
lower than in the original schedule. Further reduction of the maximum desired MILP gap below 79.2% did not give
any new timetable solution within 12 hours. The decrease with 3.81% might seem small, but it should be noted that
the fixed minimal ride and dwell times already consume 63.70% of the total passenger time in the original timetable
and 66.23% in our optimised timetable.

There are at least three straightforward methods to further increase the reduction of 3.8%. Firstly, lowering the MIP
gap can be attempted by simply allowing more solver time. However, in many cases we did not obtain an additional
1%, even in a few days of extra solver time. Secondly, differences of reduction percentages between evaluation over
major flows versus all flows can be reduced by optimising also over the smaller flows. However, when trying this
by lowering fmin below 7, sets with more than 50 trains did not return a solution within 12 hours anymore. Thirdly,
looking at the case a = 2%, columns 4 and 5 in Table 5, we see that we also still lose some of the 6.69% reduction
achieved by the optimisation with the piecewise linear cost functions compared to the 4.48% reduction if we evaluate
over the curved cost functions. An approximation with more than 2 segments could reduce the difference between
those percentages, probably at the cost of a higher solver time. Alternatively, non-linear optimisation using the non-
linear objective function directly, would completely eliminate the mentioned percentage difference. We also expect
more computation time here. However, we have not tried these methods yet.

The different rows in Table 5 show the first feasible result obtained by Gurobi when a desired gap of 79.2% was
set, for all cases of a = 1% to a = 20%. When the assumed primary delays increase, our method, except for the case
a = 18% where it does marginally worse, is still able to generate a timetable with decreased expected passenger travel
time compared to the current one. However, roughly spoken, the larger the primary delays, the lower the obtained
reduction for the optimised timetable becomes. Column 7 shows that it decreases from 3.58% at a = 1% down
to 0.58% at a = 20%. Computation times to the first feasible result remain similar. In column 8 we see that the
original timetable, which is of course the same in all cases a = 1% up to a = 20%, has an increasing missed transfer
probability from 13.6% up to 19.4%. That this probability increases for any given timetable is only natural. However,
in column 9, we see for our optimised timetables, which are different ones for every value of a, that the missed transfer
probability remains roughly the same, always between 1.91% and 3.44%. It is remarkable to see that our method can
calculate a (different) timetable with consistently low missed transfer percentages even for very large primary delays.
This is due to the fact that these are also explicitly and proportionally penalised in our transfer cost terms in our
objective function. More generally, it reflects that the produced timetables are optimised for the passengers, whatever
the circumstances.

Since we always compare our optimised timetable to the original timetable, the impression may arise that we need
a feasible timetable to start from. This is not the case. In fact, the original timetable is not feasible, since for some
trains, it does not respect the minimum ride times in some places. Our optimised timetable does respect all those
restrictions. In that sense the requirements on the optimised timetable are higher and positive results for the optimised
timetable are to be seen as conservative.

7.3. Balance: Less Expected Knock-On Delay Time versus More Expected Transfer Time

As shown in figure 4, on the third row, right column, the total expected passenger time from original to optimised
timetable decreases by 3.81%. Figure 4 also shows that the total expected knock-on delay time decreases while the
expected transfer time increases.



7.3.1. Less Expected Knock-On Delay
Timetablers in Belgium, and many other European countries, construct a timetable with the goal to respect ’macro-

scopic headway minima’ of 3 minutes. They do not use more accurate microscopic headway information nor more
accurate estimations than those 3 minute minima. So do we in our optimised macroscopic timetable. So our head-
way minima are exactly the same and in that sense headway separations and associated knock-on time results are
comparable.
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Figure 5: Planned headway times (minimum of 3 minutes + supplement) histograms, showing for each headway duration, for how many edges it
occurs and how many passengers experience the knock-on time associated with this headway duration.

In figure 5, we show histograms of headway durations for both the original (in the left half) and the optimised
timetable (in the right half) and in each case, both for the planned time domain, in terms of edges (top row) and in
terms of passengers (bottom row). One can see that, for the optimised timetable, in the right half of figure 5, no
headways are shorter than the imposed 3 minute minimum. Equivalently, none are longer than T − 3 = 57 minutes. In
the original timetable, there are a few headways that are smaller than the minimal 3 minutes and some are larger than
the 57 minutes maximum. There are 2 causes of this. Firstly, between some train pairs, less headway is planned by the
planners. Secondly, for a few trains, for a few tracks, the original timetable violates minimum ride or dwell times. This
happens precisely when timetablers are trying to fix headway violations. Since in practice, these runtime violations
will mean that the train will be delayed, we also adapt the original timetable to reflect this, so arrival and departure
times for the part of the train after the violation are increased so that the minimum ride and dwell times are respected.
This means that headway times are again decreased. From the top row of figure 5, excluding the mentioned violations,
it is evident that the average headway, if counted per edge, is always T/2. This is the case because every headway



edge e of length me + se also has an opposite headway edge of length T − (me + se). Small deviations in the average
are entirely due to the discretisation in the histogram construction. When weighing with passenger numbers, we get a
different situation. Indeed, we see that in our optimised timetable, many people experience a potential knock-on delay
associated with a second train of a train-pair that is separated by 7 minutes and also of T − 7 = 53 minutes. Assigning
big headways to trains riding before trains with many people on reduces total expected passenger knock-on time. This
is the case because the cost function, as can be seen in figure 1, is a decreasing function. Note also that on the second
row of figure 5, the optimised timetable, in the right column, indicates that fewer people will experience headways of
between 3 and 6 minutes than in the original timetable. The first row, shows a less pronounced difference, and this
can again be explained by the optimised timetable paying more attention to trains with many passengers than with few
passengers via the objective function. This is consistent with the bar graphs shown in row 3, column 2 of figure 4.

7.3.2. More Expected Transfer Time
Our optimisation currently still results in a timetable with more expected transfer time and to improve on this is

a topic for further study. So our software is already better at planning headways but humans are currently still better
at planning transfers. Important questions now are if the reduction in expected headway time is coupled to the gain
in expected transfer time or not, if a timetable with lower expected time for both knock-ons and transfers exists and
whether it can be found in an automated way and how.

7.4. Balance: Less Journey Time Offsets More Excess Journey Time
Spreading alternative trains between the same origin and destination station over the period of the timetable is

advantageous for some passengers. Indeed, consider passengers who can not adapt their arrival time at their station
of departure to the departure time of a specific train of their choice, but arrive there at a uniformly distributed random
time. Welding (1957), Holroyd and Scraggs (1966) and Osuna and Newell (1972) derived that, for this type of
passengers, the expected waiting time until departure E(w) can be expressed as a function of the average vehicle
planned heading time E(h) (over all heading times Hi in the cyclic timetable period T ) and the variation coefficient
Cv(h) of the real time heading times:

E(w) = E(h)/2 ·
(
1 + Cv(h)2

)
. (36)

Here, h is the heading time distribution and E(h) is the expected heading time as it can be calculated from the
planned timetable as

E(h) =

N−1∑
i=0

pi · Hi =

N−1∑
i=0

(Hi/T ) · Hi =

N−1∑
i=0

H2
i /T, (37)

where pi is the probability of a passenger experiencing heading time Hi in period T . Cv(h) = σ(h)/µ(h) is the
ratio of the standard deviation over the mean, both of the heading time distribution in real time. Substitution of the
right hand side of equation (37) for E(h) in equation (36) and multiplication by the number of considered randomly
arriving passengers f delivers

E( f · w) =
f

2T

N−1∑
i=0

H2
i ·

(
1 + Cv(h)2

)
. (38)

If we assume that there are no large deviations from the timetable, because it is robust, Cv(h) can be approximated
by 0 and we get

E( f · w) ≈
f

2T

N−1∑
i=0

H2
i . (39)

It can be shown that E( f · w) is minimised by setting all Hi equal to T/N. This is why many PESP papers use these
equalities as hard constraints: the regularity constraints (Peeters, 2003; Kroon et al., 2007; Liebchen, 2006, 2007;
Caprara et al., 2007; Kroon et al., 2009; Caprara et al., 2011b; Sparing et al., 2013). However, this can sometimes
be overly strict, limiting other supplements in the network to be unnecessarily constrained and as such avoiding
optimality in terms of the whole network and its expected total travel time for all passenger together.



So instead, for a given timetable and for a given set of alternative trains between stations O and D, we prefer
to evaluate the expected inter-departure waiting time at O for the f passengers going from O to D in the timetable
period T via equation (39). The inter-arrival waiting time at D is computed similarly. Together, inter-departure and
inter-arrival time are called excess journey time (Zhao et al., 2013). It must be mentioned that currently, our objective
function represents just total expected journey time for all passengers. This does not include the excess journey time
yet and this addition would be most useful, but our first experiments of adding it to the objective function during
optimisation show it is too computationally expensive. So for now, we will only evaluate this excess journey time for
both the original and the optimised timetable.

Table 7 shows the computation of excess journey time for eleven different corridors between couples of neighbour-
ing main cities, in both directions. For example, each day 1086 passengers go from Gent Sint-Pieter to Brussel-Noord
on one of the three trains: IC:A (series 500-524), IC:E (series 1500-1525) and IR:i (series 3600-3624). IC stands
for InterCity and IR for InterRegio. In the original timetable, departure times of these trains are planned at 7:03:00,
7:15:00 and 7:24:00. This leaves an interval of 39 minutes without a train departure which seems bad and gives
E(w) = 14.55 minutes according to equation (39). In the optimised timetable, the departure times are changed to
7:39:42, 7:51:12 and 7:57:18. This leaves an interval of 42.4 minutes without a train departure which seems even
worse and leads to a somewhat larger E(w) = 16.39 minutes. So the ratio of E(w) for the optimised timetable over
E(w) for the original timetable is 16.39/14.55 = 1.13. At arrival in Brussel-Zuid, the situation is similar, the E(w)
ratio is 1.36. However, for the opposite lines, from Brussel-Zuid to Gent-Sint-Pieter, there is an improvement from
the original to the optimised timetable with ratios of 0.85 at departure and 0.78 at arrival. If, for this OD-pair, we take
all excess journey time in the optimised timetable and divide it by all excess journey time in the original timetable,
we get a factor 1.03. So excess journey time in the optimised timetable is increased with 3%. However, what goes
together with the temporal spreading is of course the duration of these three train paths from origin to destination and
back. We see that in the original timetable, the lines each took 31.0 minutes which has been changed in the optimised
timetable to 27.6, 27.0 and 17.7 minutes, so on average 24.1 minutes, which is a reduction of the average passenger
journey time of a factor 24.1/31.0 = 0.78. Similarly, in the opposite direction, we reduce passenger journey time with
a factor 0.87. The ratio of all journey time for this corridor is 0.82, so a reduction from original to optimised timetable
of 18%. When we add up all time for this corridor, we have to weigh the excess journey time by the fraction ‘r’ of
passengers who cannot adapt to the timetable departure times. When we assume r = 100%, total time on the original
timetable is 119.4 minutes and total time for the optimised timetable is 110.4, which means a reduction by a factor
110.4/119.4 = 0.92 or 8%. So, for this corridor, in the optimised timetable, the excess journey time is 3% higher, but
the time that is lost there for passengers is more than compensated by the decrease in journey time of 18% of going
form origin to destination station. For these 11 OD-pairs together, the net time gained for passengers is 8%.

The situation is entirely similar for all other corridors shown in table 7 giving a net reduction of 1% to 12% per
OD-pair, except for the OD-pairs (Namur,Brussel) (+3%), Oostende-Brugge (+2%) and (Enghien-Brussel) (+9%).
The total reduction of total time over these 11 OD-pairs, so weighing with number of passengers as well as spent time
per OD-pair, is 4.2%, assuming that r = 100%. Table 8 show that for smaller values of ‘r’, the improvement is more
significant, up to 15.6% for r = 0. This increase in improvement is logical, since the excess journey time part that is
not controlled yet by our objective function is weighted by this factor ‘r’ while the journey time that is minimised via
our objective function is not.

From the examples above, we can conclude that imposing regularity constraints has the potential drawback of
increasing journey time with more time than is gained by the reduction of excess journey time. This is true, even for
train time unweighted with passengers. This is why we want to avoid this approach.

7.5. Computation Speed: The Solution is Returned Quickly
As shown in Table 5, for any primary delay distributions assumed, our solver time stays below 2.5 hours, be it

with one exception for the case a = 18% where it requires 7 hours 21 minutes. Obviously, this is a big improvement
compared to the current manual timetable creation process that takes many human planners many months. Infrabel
employs about 20 planners who work on a new planning for 4 to 6 months. Apart from this, the main passenger
operator, NMBS, also employs their planners who also spend time on creating an initial planning, that is then passed
on to Infrabel for verification and adaption. Infrabel communicates their changes back to NMBS, and this process
is iterated over a few times. Note however, that in the current process, the planning time also includes checking and
correcting routing and platforming on the microscopic level, which our method does not currently do.



Table 7: Evaluation of planned excess journey time (ejt) and comparison with journey time (jt) over OD pairs between neighbouring main cities.
Change of both measures and combined measures (with r=100%) from original to optimised timetables.

O & D orig orig orig orig opt opt opt opt opt/orig opt/orig
line 1 line2 (line 3) E(.) line 1 line 2 (line 3) E(.) ratio E(.) totals

1 IC:F:1725 IC:A:525 IC:F:1725 IC:A:525 20.32
Liege-Guil.[726] 7:08:00 7:00:00 23.1 7:19:48 7:51:12 15.0 0.65

Leuven[715] 8:01:00 7:34:00 15.2 8:05:42 8:19:42 19.3 1.27
E(jt) 53.0 34.0 43.5 45.9 28.5 37.2 0.86

1 IC:F:1700 IC:A:500 IC:F:1700 IC:A:500
Leuven[715] 7:59:00 7:26:00 15.2 7:33:18 7:49:30 18.2 1.20

Liege-Guil.[726] 8:54:00 8:00:00 24.6 8:35:24 8:20:54 19.0 0.77 0.92
E(jt) 55.0 34.0 44.5 62.1 31.4 46.8 1.05 0.95

166.0 155.4 0.94
2 IC:M:2425 IC:J:2125 IC:M:2425 IC:J:2125 559.78

Namur[895] 7:51:00 7:21:00 15.0 8:24:24 9:35:48 20.8 1.38
Brussel-=Zuid[221] 8:48:00 8:18:00 15.0 9:12:06 10:25:36 19.5 1.30

E(jt) 57.0 57.0 57.0 47.7 49.8 48.8 0.86
2 IC:M:2400 IC:J:2100 IC:M:2400 IC:J:2100

Brussel-=Zuid[221] 7:12:00 7:42:00 15.0 6:53:54 6:43:42 21.5 1.44
Namur[895] 8:09:00 8:39:00 15.0 7:44:30 7:31:36 19.9 1.32 1.36

E(jt) 57.0 57.0 57.0 50.6 47.9 49.3 0.86 0.86
174.0 179.7 1.03

3 IC:N:4500 IC:I:2000 IC:N:4500 IC:I:2000 504.49
Charleroi-S[259] 7:37:00 7:08:00 15.0 6:59:54 6:32:42 15.1 1.01

Brussel-=Zuid[220] 8:25:00 7:54:00 15.0 7:46:18 7:13:42 15.1 1.01
E(jt) 48.0 46.0 47.0 46.4 41.0 43.7 0.93

3 IC:N:4525 IC:I:2025 IC:N:4525 IC:I:2025
Brussel-=Zuid[220] 7:34:00 7:06:00 15.1 8:13:18 7:46:54 15.2 1.01

Charleroi-S[259] 8:18:00 7:52:00 15.3 8:55:54 8:25:36 15.0 0.98 1.00
E(jt) 44.0 46.0 45.0 42.6 38.7 40.7 0.90 0.92

152.4 144.8 0.95
4 IC:F:1700 IR:j:3700 IC:F:1700 IR:j:3700 336.47

Mons[848] 7:43:00 7:07:00 15.6 7:29:54 7:15:12 18.9 1.21
Brussel-=Zuid[220] 8:27:00 7:55:00 15.1 8:05:30 7:56:18 22.2 1.47

E(jt) 44.0 48.0 46.0 35.6 41.1 38.4 0.83
4 IC:F:1725 IR:j:3725 IC:F:1725 IR:j:3725

Brussel-=Zuid[220] 7:33 7:04:00 15.0 7:40:00 7:10:12 15.0 1.00
Mons[848] 8:16 7:52:00 15.6 8:14:24 7:55:54 17.2 1.10 1.20

E(jt) 43.0 48.0 45.5 34.4 45.7 40.1 0.88 0.86
152.8 151.7 0.99

5 IC:H:1900 IR:d:3100 IC:H:1900 IR:d:3100 329.87
Enghien[360] 7:33:00 7:07:00 15.3 7:16:30 7:07:18 22.2 1.45

Brussel-=Zuid[220] 7:53:00 7:30:00 15.8 7:35:06 7:25:54 22.2 1.40
E(jt) 20.0 23.0 21.5 18.6 18.6 18.6 0.87

5 IC:H:1925 IR:d:3125 IC:H:1925 IR:d:3125
Brussel-=Zuid[220] 7:07:00 7:30:00 15.8 6:31:06 7:01:12 15.0 0.95

Enghien[360] 7:26:00 7:53:00 15.2 6:52:42 7:20:24 15.1 1.00 1.20
E(jt) 19.0 23.0 21.0 21.6 19.2 20.4 0.97 0.92

104.6 113.5 1.09
6 IC:A:500 IC:E:1500 IR:i:3600 IC:A:500 IC:E:1500 IR:i:3600 1086.56

Gent Sint-Pieter[455] 7:24:00 7:03:00 7:15:00 14.6 7:51:12 7:39:42 7:57:18 16.4 1.13
Brussel-=Zuid[220] 7:55:00 7:34:00 7:46:00 14.6 8:18:48 8:06:42 8:15:00 19.8 1.36

E(jt) 31.0 31.0 31.0 31.0 27.6 27.0 17.7 24.1 0.78
6 IC:A:525 IC:E:1525 IR:i:3625 IC:A:525 IC:E:1525 IR:i:3625

Brussel-=Zuid[220] 7:05:00 7:29:00 7:14:00 13.4 7:49:06 8:19:00 8:05:54 11.3 0.85
Gent Sint-Pieter[455] 7:36:00 7:57:00 7:49:00 14.6 8:16:12 8:46:00 8:33:42 11.4 0.78 1.03

E(jt) 31.0 28.0 35.0 31.3 27.1 27.0 27.8 27.3 0.87 0.82
119.4 110.4 0.92

7 IC:C:700 IC:G:1800 IC:P:3025 IC:C:700 IC:G:1800 IC:P:3025 393.16
Gent Sint-Pieter[455] 7:16:00 7:47:00 7:05:00 11.7 7:32:54 7:06:54 6:57:42 11.5 0.98

Antwerpen-Centraal[37] 8:06:00 8:42:00 8:01:00 14.0 8:20:48 8:01:00 7:50:54 11.7 0.83
E(jt) 50.0 55.0 56.0 53.7 47.9 54.1 53.2 51.7 0.96

7 IC:C:725 IC:G:1825 IC:P:3000 IC:C:725 IC:G:1825 IC:P:3000
Antwerpen-Centraal[37] 7:52:00 7:18:00 7:59:00 13.1 6:29:30 6:35:42 6:48:54 15.5 1.19

Gent Sint-Pieter[455] 8:44:00 8:13:00 8:55:00 11.7 7:17:48 7:28:00 7:41:42 13.3 1.13 1.03
E(jt) 52.0 55.0 56.0 54.3 48.3 52.3 52.8 51.1 0.94 0.95

158.5 154.8 0.98
8 IC:G:1800 IC:C:700 IC:A:500 IC:G:1800 IC:C:700 IC:A:500 1177.78

Oostende[929] 7:02:00 7:12:00 7:43:00 11.9 6:29:00 6:58:54 6:17:18 11.4 0.96
Brugge[220] 7:18:00 7:27:00 7:54:00 11.6 6:41:06 7:15:42 6:29:18 12.7 1.10

E(jt) 16.0 15.0 11.0 14.0 12.1 16.8 12.0 13.6 0.97
8 IC:G:1825 IC:C:725 IC:A:525 IC:G:1825 IC:C:725 IC:A:525

Brugge[220] 7:44:00 7:30:00 7:03:00 10.7 7:53:30 7:12:48 7:43:54 11.9 1.11
Oostende[929] 7:58:00 7:44:00 7:17:00 10.7 8:06:00 7:25:24 7:56:12 11.8 1.11 1.07

E(jt) 14.0 14.0 14.0 14.0 12.5 12.6 12.3 12.5 0.89 0.93
72.8 74.0 1.02

9 IC:N:4525 IC:I:2025 IC:Q:2625 IC:N:4525 IC:I:2025 IC:Q:2625 654.61
Antwerpen-Centraal[37] 7:47:00 7:17:00 7:42:00 12.9 7:33:48 6:59:54 7:21:36 10.8 0.84

Mechelen[810] 8:07:00 7:37:00 8:03:00 13.3 7:48:42 7:22:30 7:37:24 12.4 0.94
E(jt) 20.0 20.0 21.0 20.3 14.9 22.6 15.8 17.8 0.87

9 IC:N:4500 IC:I:2000 IC:Q:2600 IC:N:4500 IC:I:2000 IC:Q:2600
Mechelen[810] 7:53:00 7:23:00 7:57:00 13.3 7:12:54 7:39:30 8:22:00 12.5 0.95

Antwerpen-Centraal[37] 8:13:00 7:43:00 8:18:00 12.9 7:27:42 7:55:18 8:37:48 12.2 0.94 0.92
E(jt) 20.0 20.0 21.0 20.3 14.8 15.8 15.8 15.5 0.76 0.82

93.0 81.2 0.87
10 IC:R:3425 IC:N:4525 IC:I:2025 IC:R:3425 IC:N:4525 IC:I:2025 525.90

Mechelen[810] 7:57:00 7:10:00 7:40:00 11.3 7:00:00 7:49:42 7:24:30 11.2 0.99
Brussel-=Noord[221] 8:13:00 7:23:00 7:55:00 12.1 7:14:24 8:01:36 7:35:48 10.7 0.89

E(jt) 16.0 13.0 15.0 14.7 14.4 11.9 11.3 12.5 0.85
10 IC:R:3400 IC:N:4500 IC:I:2000 IC:R:3400 IC:N:4500 IC:I:2000

Brussel-=Noord[221] 7:47:00 7:37:00 7:05:00 12.1 7:15:54 7:58:36 7:25:18 12.5 1.03
Mechelen[810] 8:03:00 7:50:00 7:20:00 11.3 7:30:42 8:10:48 7:36:06 13.6 1.20 1.03

E(jt) 16.0 13.0 15.0 14.7 14.8 12.2 10.8 12.6 0.86 0.86
76.1 73.1 0.96

11 IC:G:1800 IC:A:500 IC:E:1500 IC:G:1800 IC:A:500 IC:E:1500 1169.78
Brugge[210] 7:18:00 7:59:00 7:36:00 10.1 6:42:12 7:31:24 7:18:42 13.4 1.33

Gent Sint-Pieter[455] 7:45:00 8:22:00 8:00:00 10.3 7:05:54 7:50:12 7:37:42 11.8 1.14
E(jt) 27.0 23.0 24.0 24.7 23.7 18.8 19.0 20.5 0.83
11 IC:G:1825 IC:A:525 IC:E:1525 IC:G:1825 IC:A:525 IC:E:1525

Gent Sint-Pieter[455] 7:42:00 7:01:00 7:24:00 10.1 7:29:06 7:17:18 7:48:00 11.3 1.12
Brugge[210] 8:15:00 7:38:00 8:00:00 10.3 7:52:30 7:36:12 8:06:30 11.2 1.09 1.17

E(jt) 33.0 37.0 36.0 35.3 23.4 18.9 18.5 20.3 0.57 0.68
100.9 88.5 0.88



Table 8: Reduction of expected passenger time, including both journey time and excess journey time for varying fractions (r%) of passengers not
adapting their arrival time at station of departure to train departure times in the timetable.

r (%) 0 10 20 30 40 50 60 70 80 90 100
reduction (%) 15.6 13.6 12.0 10.6 9.3 8.2 7.2 6.4 5.6 4.9 4.2

8. Validation and Check of Applicability by Simulation

8.1. Validation by Macroscopic Simulation

To validate the robustness of our timetable we simulated both the original timetable and the optimised timetable
with the macroscopic simulator OnTime of TrafIT GmbH and VIA Consulting & Development GmbH. OnTime
performs delay propagation calculations with given primary delays, minimal run times, minimal dwell times, minimal
headway times at sections, junctions and stations. It can also take into account train priorities, minimal turn-around
times and a list of transfers with synchronisation times. It does not take into account passenger numbers. This means
that all reported measures are train related. OnTime reports train punctuality in various forms. In figures 6(a) to 6(n),
the horizontal axis represents the time of the day and the vertical axis represents the number of events. An event is a
departure or arrival of a train. Green pixels represent events that occur with a delay of less than 5 minutes compared
to its planned time. Red pixels represent events that occur 5 or more minutes later than planned. Dark red pixels
represent events that occur more delayed than events represented by light red pixels. Figures 6(a) to 6(b) show that
without primary delays, there is no accumulated remaining delay in the system. We know that the original timetable
has some run time violations, implying negative supplements, which inject delay. Since figures 6(a) to 6(b) show
that there is no remaining delay, this implies that the original timetable is relatively stable, even with these negative
supplements. This means that this timetable still can absorb these delays by compensating positive supplements at
later activities of the same train. Note however that this result does not include any possible headway issues yet.
Figures 6(c) to 6(d) show that even with some primary delays, the buffers present in the system can absorb them and
no serious delays are accumulated. Only when the necessary headway minimum times are imposed, in figures 6(e)
to 6(j), we see that some red pixels result, more so in the original than in the optimised timetable. This indicates
accumulated delays. Especially the section headway minima are causing delays especially in the original timetable.
This indicates that on top of these minima, larger buffers exists in the optimised than in the original timetable in
places where it matters most. The optimised timetable can ’absorb’ these problems better. Figure 6(k) to 6(l) show
no significant change in accumulated delays when turn-around minima are imposed. Figures 6(m) shows that in
the original timetable, when also transfers are considered, some more red pixels are added to the graph while for
figure 6(n) no extra red pixels seem to be generated. Note that punctuality of all transfers are considered without any
weighing by passenger numbers.

Figures 7(a) to 7(f) show the punctuality analysis for a whole day geographically in terms of the probability of
being less than 0 minutes late in an approaching activity. This includes transfer punctuality. Note that passenger
numbers are not considered in these graphs. In these figures, ’red/green x%’ means that a green dot will appear if
for all x% smallest delays, the train still arrives in time. A light green, white, light red and dark red dot mean that
this is almost to not at all the case. From figures for all values of x: 50, 80, 90, the punctuality for the optimised
timetable is clearly better than for the original one. Indeed, the optimised timetable compares favourable to the
original timetable for x=50 in that figure 7(b) has the only red dot in Brussels-Central and the only non-dark green dots
between Antwerpen and Puurs, while figure 7(a) has quite some red dots at some stations at the Belgian boundaries
and also a long string of white or only light green dots along the axis between Luxembourg and Brussels as well as
between De Panne and Deinze. When requiring 80% up to 90% of trains to arrive on time in figures 7(c) to 7(f), of
course more red dots appear for both timetables. However, on average over all locations, the situation is consistently
and significantly better for the optimised timetable than for the original timetable. It should also be noted that a
timetable that has truly minimal expected passenger time may still generate some red dots in an OnTime report for
say x%=99% because this means that only with a probability of 1% trains will be late. It may not be worth to provide
a buffer against the delays causing this since this may make the timetable unnecessarily inefficient in 99% of the other
cases. Our objective function makes this trade-off between robustness and efficiency for passengers. Note that figures
7(a) to 7(f) show lateness as defined with zero minutes delay, because that is the threshold at which passengers start



(a) Original timetable without primary delays (b) Optimised timetable without primary delays

(c) = (a) + considering primary delays (d) = (b) + considering primary delays

(e) = (c) + considering section headway minima (f) = (d) + considering section headway minima

(g) = (c) + considering junction headway minima (h) = (d) + considering junction headway minima

(i) = (c) + considering all headway-minima (j) = (d) + considering all headway-minima

(k) = (i) + considering turn-around-minima (l) = (j) + considering turn-around-minima

(m) = (k) + considering transfer-min. and synchronisation-max. (n) = (l) + considering transfer-min. and synchronisation.-max.

Figure 6: OnTime event punctuality analysis reports. The horizontal axis is the time of the day. The vertical axis is the amount of train events,
where green pixels are on time events, light red pixels are slightly delayed events and dark red pixels are more delayed events. Passenger numbers
are not considered in these graphs.

to experience delays. Train companies usually report punctuality numbers based on lateness definitions of 6 minutes
late (in Belgium and Switzerland) or 3 minutes late (in The Netherlands).

We conclude that our OnTime macroscopic simulations and reports confirm that more punctuality and so more
robustness against primary and secondary delays is present in the optimised timetable than in the original timetable.
This robustness was achieved by minimisation of our objective function of expected passenger time. Note that our
optimisation assumed an average of primary delay distribution of a = 2%. With this assumption, we were able
to generate a timetable that is more punctual according to OnTime simulations that use standard but train specific
Infrabel primary delay distributions. This means that this a% assumption led to a timetable with both lower expected
passenger journey time as well as better punctuality. When increasing the value of ‘a’, a generated timetable with
higher punctuality against the same primary delays is expected, but expected passenger journey time may rise.



(a) Orig. tt, 0’:00” late probability, red/green 50% (b) Opt. tt, 0’:00” late probability, red/green 50%

(c) Orig. tt, 0’:00” late probability, red/green 80% (d) Opt. tt, 0’:00” late probability, red/green 80%

(e) Orig. tt, 0’:00” late probability, red/green 90% (f) Opt. tt, 0’:00” late probability, red/green 90%

Figure 7: OnTime GeoView 0’:00” late probability analysis for a full day, with consideration of transfers. For red/green x%, a red dot means that
in that location, less than x% of all trains arrives in time. Punctuality for the optimised timetable is clearly better than for the original one.



8.2. Check of Applicability by Microscopic Simulation

On a macroscopic level, we have decreased expected passenger journey time by creating a new timetable and
validated this with a macroscopic simulator OnTime. We now want to check that we do not lose these benefits if
we simulate the timetable on a microscopic level. We use the microscopic simulator LUKS of VIA Consulting &
Development GmbH. LUKS performs delay propagation calculations on a microscopic level. It takes much more
calculation time than OnTime for the same area and the microscopic routing of the trains is not available for many
areas. Therefore, we are forced to restrict the simulations to a smaller area where the routings are known. The most
relevant area is the bottleneck of train traffic in Belgium: the axis between Brussels-Kapelle, Brussels-Central and
Brussels-Congres, because there, the most trains per track occur. This means that train knock-on effects will be the
largest in this area. Additionally, this is also the area with the most passengers. Because of this, the timetable of this
area affects the most passengers and requires the most attention in timetable planning.

In each of these 3 stations, only six tracks exist, all of them in underground tunnels. This means that it would
be hard and expensive to increase the number of tracks in this area and so it will remain a bottleneck in the Belgian
train network. In each of these 3 stations, for a chosen line, there is only one platform choice possible and also only
one routing variant possible. This means that the platform and routing assignment plan is necessarily the same for
the original and the optimised timetable. So the comparison of the delay propagation of the two timetables is fair and
cannot be biased by a different platform and routing plan.

First of all, LUKS detected that the original timetable contained one conflict on the microscopic level but declared
the optimised timetable conflict-free. Secondly, for primary delays that Infrabel deems typical, 100 simulations with
LUKS of both timetables revealed that the average ratio of the realised train time to planned train time is 1.6 for the
original timetable but only 1.25 for the optimised timetable. We conclude that, by separating trains on a macroscopic
level, such that passengers benefit most in terms of low expected journey times, we generated a timetable that also has
fewer punctuality issues - at least for the tunnel-tracks in Brussels - than the current one. We see no reason why this
would not be the case in other areas.

9. Conclusions and Further Work

This paper has four main contributions. Firstly, our MILP model avoids infeasibility issues caused by artificial
upper bounds on supplements as can be the case in other models. In practice our model has always returned a
feasible solution. This assumes that the number of trains being scheduled does not exceed the available capacity,
since naturally, all our generated timetables have to and do respect all minimal ride, dwell, transfer, headway and
turn-around time rules. Secondly, our objective function results in timetables with minimised expected passenger
time, meaning the total passenger travel time, including their ride, dwell and transfer activities, as well as the typical
primary delays and their consequential knock-on delays in practice. This means that, on a macroscopic level, our
generated timetables are both efficient and robust by construction. Thirdly, this timetable is also quickly generated.
Computation times for the whole Belgian timetable are only about two hours. Fourthly, supposing primary delay
distributions with an average of 2% of the minimal time of their corresponding activities, our improved timetable
reduced expected passenger time for all passenger streams by 3.8% compared to the current one. We also show that
the generated timetable is more punctual than the original timetable.

From our extensive modelling efforts, we also learned that while restricting the search space and using curtailed
objective functions are the easy way to reduce solver times, searching the full solution space and defining an all-
encompassing objective function can lead to more desirable results: a lowered risk on infeasibility, optimality and
even satisfactory solver times. Our model and software tool is now available within Infrabel and we believe that
together with DONS and CADANS at the Dutch railway operator NS and TAKT at the German railway operator DB,
these are the only tools that are available to railway timetable practitioners that are capable to automatically generate
a national timetable. In summary, this paper demonstrates that we added two important missing steps to make cyclic
timetabling for passengers really useable in practice: (i) the addition of the objective function of expected passenger
time in practice and (ii) the reduction of computation time by addition of well chosen additional constraints.

We envision some further useful extensions of our work. (i) The macroscopic timetable should be microscopically
verified. In some stations the guaranteed 3 minutes between train-pairs on open lines may not be enough to also
guarantee that all trains can be routed and platformed. Hopefully this can be done with small adaptations to train



arrival and/or departure times. (ii) In our timetabling process we adapted the timetable to the expected passenger
flows. Once our timetable would be put in practice, passengers will reconsider which route they will take. To obtain an
estimate of expected passenger time in practice that also considers this effect, one could add another passenger reflow
pass after the described timetabling process and report expected passenger time again after that. A higher reduction
percentage than the currently reported 3.81% is then expected, so this road should be taken. (iii) The calibration of
the primary delay distributions with the total real delays measured in practice would give an even more fine-tuned
timetable. (iv) Also refining the minimum transfer times, which are currently all set to 3 minutes, differentiating them
by station or even - if likely platform assignments are known - by platform to platform walking time seems a task
worth trying to make the presented model even more realistic. (v) The concern of spreading in time of alternative
trains between the same source and destination has not been modelled yet. As for knock-on delays, this could be
done as a soft constraint by addition of objective function terms, rather than the usual hard frequency-arc constraint
approach.
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AppendixA. Proof: Our supplement upper bounds never cause infeasibilities.

Unlike other PESP models we only restrict our supplements to be smaller than the timetable period T, formaly,
∀e ∈ E = E′ ∪ E′′ : se < T . We claim that this never introduces new infeasibilities compared to the model without
these constraints. A proof is given here.

Let the model M1 be the model without any upper bounds on any supplement se. Let the model M2 be the model
with an upper bound on any supplement s, so M2 is equal to the model M1 with only the additional constraints:
∀e ∈ E : s < T . Suppose that M1 is feasible. We then execute the following algorithm to construct a solution to M2
from the solution to M1.

• Step 1: Modulo T Compression: For any intra-train constraint, so ∀e ∈ E′ : be + me + s = ee, we call the
solution to M1 for a specific e ∈ E′, (be,1, se,1, ee,1) for which se,1 < T not necessarily holds. Given that se,1 ≥ 0,
we can construct a solution to M2 as (be,2, se,2, ee,2) = (be,1, se,1 − ie · T, ee,1 − ie · T ), where the integer ie is
chosen so that 0 ≤ se,2 < T . Said otherwise se,2 = se,1 mod T , so this is always possible. This solution can
be applied for every e ∈ E′, performed train per train (independently), and in the chronological order of (ride,
dwell) edges of a train. When an edge e is compressed by an amount ie · T , for all succeeding edges e of that
same train, be,1 and ee,1 are also decremented by ie ·T . (Note that this maintains the satisfaction of the constraint:
be,1 + me + se,1 = ee,1.) Afterwards (be,2, se,2, ee,2) = (be,1, se,1 − ie · T, ee,1 − ie · T ) is applied on those succeeding
edges. This is always possible since the set E’ contains no cycles. Note that also for the minimum scheduling
hour hlo · T , ∀e ∈ E′ : hlo · T ≤ be,2 ≤ ee,2 still holds, since the beginning time bet,0,2 = bet,0,1 of the first edge
et,0 of each train t has not been decreased and all other times be,2, ee,2 of that train t have not been decremented
below bet,0,2. Since no single time be or ee has been increased, it also still holds that ∀e ∈ E′ : be,2 ≤ ee,2 ≤ hhi ·T .
So we conclude that constraints for all intra-train edges in M2 as well as the boundary constraints to do with hlo

and hhi are satisfied.

• Step 2: Inter-Train Constraint Matching: For any inter-train constraint, so ∀e ∈ E′′: be + me + s + de · T = ee,
we call the original solution to M1 for a specific e ∈ E′′, (be,1, se,1, de,1, ee,1) for which s1 < T not necessarily
holds. Since step 1 above was carried out, be,2 and ee,2 can now be different from be,1 and ee,1. Indeed, after step
1, in general (be,2, ee,2) = (be,1 − i · T, ee,1,− j · T ) holds, with 0 ≤ i ≤ j and be,2 ≤ ee,2. So the originally satisfied
constraint from M1, (be,1)+me+se,1+de,1·T = (ee,1), can be converted to (be,2+i·T )+me+se,1+de,1·T = (ee,2+ j·T )
or be,2 + me + se,1 + (de,1 + i− j) · T = ee,2. By setting se,2 = se,1 − k · T with k ≥ 0 and 0 ≤ se,2 < T , so se,2 = se,1



mod T , we get be,2 + me + (se,2 + k · T ) + (de,1 + i − j) · T = ee,2 or be,2 + me + se,2 + (de,1 + i − j + k) · T = ee,2.
Next, we set de,2 = (de,1 + i− j + k) ·T such that be,2 + me + se,2 + de,2 ·T = ee,2 results, which delivers a solution
(be,2, se,2, de,2, ee,2) for any edge e ∈ E′′ for M2.

Note that i− j+k can be both negative or positive so de,2 can be smaller, equal or larger than de,1, which initially
can raise the concern that a larger range for the de variables would be needed for M2 compared to for M1 to be
able to guarantee feasibility. However, since step 2 does not change any values be,2 or ee,2 compared to step 1,
all these values are still in the [hlo · T, hhi · T ] window as proven in step 1. Consequently, they are still at most
(hhi − hlo) · T apart. This means that the range of de can be kept the same for M2 as for M1, more specifically:
∀e ∈ E′′ : de ∈ [hlo − hhi, hhi − hlo].

As for the cycle constraints, these are linear combinations of the other constraints, so if the other constraints
will not cause infeasibilities, neither will the cycle constraints.

�

AppendixB. Conjecture: Activity lower bounds are the only potential causes of infeasibilities.

It is clear that the following situations cause our model to become infeasible.

1. Lower bounds on ride and dwell times per train: When the sum of the minima of subsequent ride and dwell
actions of a train sum up to S and when the time window [hlo · T, hhi · T ] to schedule trains in has length
(hhi − hlo) · T < S , the model will be infeasible. These problems are caused by lack of time.

2. Lower bounds on headway times per track: When more than twenty trains are required to be planned on a
single infrastructure resource in 60 minutes and also a lower bound of 3 minutes headway time is imposed, one
is obviously asking the impossible. The model will then be infeasible. These problems are caused by lack of
capacity which can also be seen as lack of space.

We think that there are no other causes of infeasibilities in our model. Note that the manually created timetable
that we read in should also avoid these two causes of infeasibilities. If this is the case, a model will be created that
has none of these supplement lower bound infeasibility issues either. Firstly, to avoid the infeasibilities of type 1,
we derive the makespan of the original timetable, round it up to an integer multiple of hours and then add one extra
hour to it. This forms the time window in which we try to schedule all trains for the optimised timetable. Secondly,
in practice, we see that in the original timetables, no more than 17 trains per hour have been planned on any track,
as such avoiding infeasibilities of type 2. This means that we will not have infeasibilities of that type in our model
either. So, the guarantee of our model being protected against infeasibilities of type 1 and type 2 is controlled by
the ‘sensibility’ of the orirginal imput timetable. More particularly, in the original timetable, the sum of ride, dwell
minima for every train should be at most the timetable’s makespan and the sum of the headway minima should be at
most the timetable’s period. One could check for these conditions and report type 1 and type 2 infeasibilities even
before trying to solve the model. If there are indeed no other infeasibility problems apart from type 1 and 2, this would
then mean that the model only has to be solved when feasibility is guaranteed.

References
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