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Abstract
When evaluating and optimizing the national railway timetable for all passenger trains in
Belgium, we use the criterium of expected total passenger travel time in practice. During
evaluation, we measure this, during optimization, we try to minimize this. The focus in
this paper is to analytically derive the total passenger time as a stochastic function of the
schedule. In a previous paper [9], we already derived the necessary local passenger flows
from ticket sales data. These flows will serve as fixed weights in this new objective function.

We start from measured delays in the current schedule and assume that they can be de-
scribed well by a negative exponential distribution. In the case of constructing an optimized
schedule, we assume delays will also occur in the new schedule according to the same dis-
tribution. We believe this is a conservative assumption, since the optimized schedule will
be more robust against delays.

We then decompose the global schedule of actions into local actions or pairs of subsequent
actions, and derive probabilities and objective functions on the corresponding one or two
local actions only. We sum these local functions to obtain a global objective function. This
then becomes the schedules’ global quality criterium. We linearize this and use the result as
the objective function of a linear programming based optimizer. With this objective func-
tion, we optimized the train schedule for the Belgian railways, which proves the method is
scalable to large and complex real-life problems.
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1 Introduction

We consider total passenger travel time in practice as the most important criterium for judg-
ing the quality of a train schedule [1]. In such a objective function, we need to use passenger
numbers [9] instead of trains as weight factors. In evaluating an existing schedule we should
check that this objective function stays low and that few or no planned transfers are missed
frequently, especially if many people are transferring. In optimizing a schedule, we should
guarantee these properties. Not only transfers, but also ride and dwell actions should be
planned with supplements that are neither too small, such that they are unable to absorb
any practical delay, nor too big, such that they create unnecessary idle time in practice. In
this paper, we analytically derive the stochastic expected passenger time on each location
throughout the network, so that it can be used for evaluating if a specific supplement is well
chosen or not. The global function of total expected passenger time is derived from this,
which directly gives a practical quality criterium for the whole schedule. This global func-
tion (or some convex, linear approximation of it) will also be used as the objective function
for a (linear) solver when optimizing.

2 Related Research Overview and Comparison

Concerning linear modeling of a train service, some theoretical research has been carried
out already [3, 4, 5, 6, 8, 10, 11]. The first schedule that has been mathematically calculated,
be it only for feasibility and not for optimality, was the one for the Netherlands, and is due
to Kroon et al. [5]. Whether one of these schedules was actually put in practice is unclear.
Christian Liebchen states [6] to have produced the first schedule that was mathematically
calculated and then also put into practice. This included both schedule feasibility as well as
optimization of some selected transfers and concerned the Berlin Underground, containing
37 train relations. We go further here, by handling a much larger network - all periodic
passenger trains in Belgium - and more importantly, using an all-embracing optimization
objective function: passenger time in practice, which automatically considers all potential
transfers [9]. Since we minimize the objective function, the resulting timetable will be
robust, and this, in a natural, consistent and balanced way, across all ride, dwell and transfer
actions. The idea of using expected passenger time as a objective function to minimize
is based on research from Vansteenwegen et al.[12, 13] and Dewilde et al. [1]. The great
power of this objective function is that it gives an automatic and sensible trade-off between a
speedy yet robust service, where buffers and supplements are neither too large nor too small.
It also weighs and balances all minutes spent in the network fairly across all passengers. For
optimization of a schedule, apart from a objective function, of course, a large number of hard
constraints is necessary. We implemented and use all of these in practice, but they are not
discussed in this paper. The sole focus of this paper is the objective function.

3 Decomposing the Train Service Network into Actions with Local
Passenger Flows

We model each train trip as consisting of five types of actions. Figure 1 shows that each ac-
tion can be represented by a rectangle with a width, indicating the planned duration of this
activity and the height, indicating the number of people participating in that action. A train
trip can be seen as a sequence of mainly blue train ride and yellow train dwell actions. Ad-



ditionally, there are three types of passenger actions: green colored source actions, which
represent people getting on the train, orange colored transfer actions representing passen-
gers walking from one train to another, and red sink actions, representing people arriving at
their destination.

Like Meng [7], Goverde [2], and Vansteenwegen et al. [12, 13], we suppose a general
negative exponential delay distribution for the duration of each of the actions: ride, dwell
and transfer. Source and sink actions can be considered as having a zero expected delay. The
duration of source and sink actions does not influence the planning. They are only present
in Figure 1 to indicate per train, the number of passengers entering or exiting the station at
each of its stops. The ride, dwell and transfer actions all have a given minimal duration.
After each of these three actions, a time supplement is added. Figure 1 shows these in a
lighter color shade of blue, yellow and orange for the respective actions. These supplements
contain the time to buffer possible delays of the previous action(s), but can also be much
bigger than that in case the subsequent action has to start much later to allow departing or
transferring passengers to enter the train considered. The durations of these buffers or filler
actions are called the supplement times, and are the only relevant time parameters present in
our objective function: the total expected passenger travel time. The optimization problem
we consider here, in the so called retiming phase [9], is to determine a supplement time for
each action, so that the total expected passenger travel time is minimal. Note that Figure 1
shows the planned schedule and that actual delays on actions can be smaller than their shown
supplements, in which case there is slack time, but that when actual delays are bigger than
the supplements, delay will propagate, yet hopefully be absorbed by supplements later.

The top couple of trains in Figure 1 are taken from the current Belgian planning, and the
bottom couple of trains show the time optimized version according to the objective function
we will derive here. Some corresponding actions between both schedules are indicated
with the same numbers in grey circles. Note that there are two passenger transfers between
the two trains (Numbers 1=3 and 2=4) and that this influences the relative time alignment
between the two trains. We also suppose that each of the trains occurs every hour. It must
be noted that the current expected delay distributions on each action currently are realistic,
but fictive. In the end, these will be replaced by distributions based on actual measurements.

Whether the bottom couple of trains takes more or less planned passenger time is not
so relevant. However, in operation, taking all statistical occurrences of these train trips
together, for all the actual numbers of passengers, the expected passenger time in practice
will be lower than for the original top train couple. This is the case, because the bottom
couple of trains will be more robust against operational delays on its actions. So, this global
objective function allows us to evaluate as well as optimize the timing for trains. To derive
this function, we will now start with introducing the level of action pair types.

4 Regrouping per Action Pair Type

Using a bottom up approach, we now cut up a train schedule at ride departure times. We are
then left with separated parts, consisting of pairs of subsequent actions.

Similar to Vansteenwegen et al. [12, 13] and Dewilde et al. [1], we call passengers who
experience the successive actions: ride and dwell, through passengers. Transfer passengers
are the ones taking a ride and then a transfer action to the next ride action. Departing pas-
sengers follow a source action to a ride action. Arriving passengers come from a ride action
and go to a sink action. We call these four kinds of passenger types, the passenger flow
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types. We summarize these and their corresponding action types in table 1. In conclusion,
there are 5 types of actions which only occur in 4 types of pairs of subsequent actions.

Table 1: Four Passenger Flow Types and Corresponding Action Sequences
Passenger Action Action
Flow Type a b
Departing (Source) Ride
Through Ride Dwell
Transfer Ride Transfer
Arriving Ride (Sink)

It must be clear that during their journey, a single departing passenger, becomes a
through passenger, can become a transfer passenger, a through passenger again and finally
always becomes an arriving passenger. Each passengers’ flow type is only locally valid, for
each two successive actions.

So we decomposed the total passenger flows on all trains into actions, to then recompose
them into pairs of subsequent actions, corresponding to a particular passenger flow type.
Each type of passenger is interested in having a minimal expected travel time for all the
action pairs he undergoes.

For through and transfer passengers, the exact trade-off will be dictated by minimization
of the expected passenger travel time. This depends on two actions and their delays, so for
this, convolution of the delay distributions of both actions will be necessary.

For arriving passengers, only the last ride action matters for the delay on this last part
of their journey.

For departing passengers, we will reasonably suppose their travel time starts counting at
the planned departure time. Indeed, their choice to potentially arrive earlier to avoid missing
their departure train, is independent of any particular time we will assign to this departure
event. So their relevant departure delay is the delay of the previous ride and dwell action pair
of their train, when such a pair exists. If such a pair does not exist, the departing passengers
are catching a train at its very first ride action, and we suppose there is no possible delay
nor associated passenger time cost.

For each of the four passenger flow type cases, a corresponding pair of action types,
makes up the time in between two subsequent ride departure times. They correspond to the
times we want to evaluate or optimize, weighted with the net corresponding passenger flow
number on this action pair.

We know that, in reality, delays can be accumulated over a full train journey from be-
ginning to end. This is often the case when at places where delays often occur, no time
supplements are inserted to absorb these delays. In this research, we try to do exactly this:
calculate supplements that absorb enough delay locally, not globally, yet not too much, since
we still want to maintain a speedy service. In this way, we avoid that delays propagate in
most cases. On top of this, for each train, we will accumulate sequences of undisturbed
blocks of ride-dwell-pairs up to the point where either the passenger numbers change, or
another train enters or exits the same track. For each such block, the measured delay is
accumulated and the (accumulated) supplements are then correctly placed at the end of the
block only, as can be seen in Figure 1(b) by the position of the light blue rectangles in the
optimized schedule.



5 Local Objective Function Derivation

We now analytically derive the expected passenger time in practice of one action and of an
action pair, based on their delay distributions.

5.1 One Single Action Only

Fitting Model Delay Distribution to Delays
We first consider an action a or process with a minimum time m and a probabilistic delay
variable x as described by Vansteenwegen et al. [12, 13]. We can measure the occurrences
of delays for this process and fit a normalized negative exponential distribution on these
measurements. The probability pa(x) on a delay x can then be expressed as

pa(x) = ae−ax. (1)

Note that (1) is normalized which is required for a probability distribution. Indeed∫ ∞
0

pa(x)dx =

∫ ∞
0

ae−ax = −e−ax
∣∣1
0
= (−0)− (−1) = 1. (2)

The fitting is done by choosing the single negative exponential distribution that has the
same expected value da as the originally measured discrete delay sample histogram. For
action a, for the measured discrete histogram, considering samples collected in N groups,
per value xi at index i and respective number of occurrences hi, this gives

da =

∑N−1
0 hixi∑N−1
0 hi

. (3)

For the continuous distribution the equivalent expected value is 1

ca =

∫ ∞
0

xae−ax =
1

a
, (4)

Our fitting criterium is that the expected value of the fitted distribution must equal the
expected value of the original distribution. This corresponds to

ca = da, (5)

which, considering (3) and (4) gives

a =

∑N−1
0 hi∑N−1

0 hixi

. (6)

In Time Probability
For this section, to ease the derivation, we ignore the part of the time cost that is related to the
minimum time m for an activity. This can be done because this part does not depend on any
supplement choice and as such will not influence comparative evaluation nor optimization.

For now, we suppose our activity a is to be followed by another activity b that, according
to the planning, starts at time D0 later than the end of the current activity a. So we suppose

1Whenever a calculus step is not trivial, the PDF version of this paper allows the reader to click right of the
respective equal sign, which will send the formula in Mathematica notation to www.wolframalpha.com and his
invoked browser will then display the result.

http://www.wolframalpha.com/input/?i=Integral%28x+a+exp%28-a+x+%29%2C+0%2C+infty%29
http://www.wolframalpha.com


that D0 is the time supplement we will decide to add between activities a and b. Activities
a and b are the pairs of activities discussed above, D0 is the supplement between these.

We have a possibility that we end our current activity within time supplement D0. We
calculate the in time probability that this happens as

pa,x≤D0(D0) =

∫ D0

0

pa(x)dx =

∫ D0

0

ae−axdx = 1− e−aD0 . (7)

In Time Cost
Since all time units are supposed to be equally weighted, the corresponding unit time cost
of this supplement D0 is

UCa,x≤D0(D0) =

∫ D0

0

D0pa(x)dx = pa,x≤D0(D0) ∗D0 = (1− e−aD0)D0. (8)

We call UCa,x≤D0
in (8) the in time cost of a supplement D0. This cost is called unit

cost because this is the cost for one passenger and for each time unit experienced with a
unity annoyance weight or level.

Over Time Probability
Now we suppose that we missed the start of activity b because we were delayed in activity
a by more than the introduced supplement D0. We now also suppose that there is a second
chance (for instance the next train) to catch b in time D1 i.o. D0, where D1 > D0. The
over time probability that we miss b at D0 but can catch b at D1 is

pa,x≥D0(D0) =

∫ D1

D0

pa(x)dx =

∫ D1

D0

ae−axdx = −e−ax
∣∣D1

D0
= e−aD0 − e−aD1 . (9)

D1 could be taken to be∞ if no further b alternatives are considered.

Over Time Cost
When the delay of the activity a somehow takes longer than D0 we cannot catch the next
activity b that starts at that time. We suppose we must then catch the alternative activity,
which we suppose starts at time D1 > D0. When trying to catch the ride of another train
after a transfer for example, this will be the ride action of the next train in initially the same
direction. We will often find times like about one hour or half hour or so in a practical,
regular train service. This can be enforced by requiring that n trains per hour leave at
regular time intervals of about 1/n-th of an hour. The parameter D1 is supposed to be
known, while D0, in the optimization context, is the variable we want to find an optimum
for. We can again, similarly, calculate the probability that we can catch the activity at time
D1 and the corresponding time cost as


pa,D0≤x≤D1(D0, D1) =

∫ D1

D0
pa(x)dx =

∫ D1

D0
ae−axdx = e−aD0 − e−aD1

UCa,D0≤x<D1(D0, D1) =
∫ D1

D0
pa(x)D1dx = pD0≤x≤D1D1

= (e−aD0 − e−aD1)D1.

(10)

Note that probabilities and unit costs are positive.
Going on one more step, from D1 to D2 we have similar formulas, by simply substitut-

ing D2 for D1 and D1 for D0 in (10) or in general




pa,Dn−1≤x≤Dn(Dn−1, Dn) =

∫ Dn

Dn−1
pa(x)dx =

∫ Dn

Dn−1
ae−axdx

= e−aDn−1 − e−aDn

UCa,Dn−1≤x<Dn(Dn−1, Dn) = pDn−1≤x≤DnDn

= (e−aDn−1 − e−aDn)Dn.

(11)

All Time Units are Weighted the Same
If all time units are considered to have the same subjective annoyance, the total probability
and unit time cost over all subsequent time intervals is

{
pa,D0≤x<Dn(D0, D1, D2, ..., DN ) =

∑N−1
n=0 pa,Dn−1≤x≤Dn(Dn−1, Dn)

UCa,D0≤x<Dn(D0, D1, D2, ..., DN ) =
∑N−1

n=0 UCa,Dn−1≤x≤Dn(Dn−1, Dn),
(12)

where N is the number of terms we want to consider and D−1 = 0 to simplify notation.
The higher n gets, the lower the contribution to the result becomes, due to the decreasing
probabilities of the integration interval between Dn−1 and Dn. Figure 2(c), shows a plot
of these probability functions. We call this the one dimensional case because only a delay
on one action plays a role here. D1 = 39 and D2 = 54, so 15 time units after the first
repetition, a new repetition of the next action creates a possibility to catch it again.

Figure 2(e) shows an example of the first three terms of the unit cost in (12) for chosen
values 39 and 54 for D1 and D2 respectively. The expected delay duration of action a is
da = 6. Clearly the total time cost gets minimal when D0 = 10 time units. Note that the
third term, UCD1≤x<D2

is constant for all values of D0 and as such does not influence the
value of the optimal D0 supplement. Also, this third term is much less important in absolute
value, compared to the first two terms.

In practice, for this case with constant annoyance level for all types of time units, we
will only use the first two terms to calculate the total cost.

Time Units Can Have Different Weights
For passengers, some time units are sometimes considered more annoying than others. This
depends on the activity. For example, riding feels more useful and pleasant than dwelling.
Also, when train connections are missed, annoyance grows.

Like [12, 13], we model these annoyances by multiplying each time unit by a weight.
We introduce the weight wa,i for the delay x of an activity a where i stands for the number
of next activity instances that has been missed already. This holds for a passenger on a
specific switching from one activity to the next. Of course, annoyance grows when missing
more next activity instances, so it will hold that

∀a ∈ A : ∀i ∈ N : wa,i ≤ wa,i+1. (13)

We further introduce wc,i as the weight for the left over idle time D0 − x. The prob-
ability calculation remains the same as in (8) and (10) in the previous paragraph, but the
corresponding unit cost integrals become somewhat more involved. Indeed,

wUCa,x≤D0(D0) =
∫ D0

0
(wa,0x+ wc,0(D0 − x))pa(x)dx

= wc,0D0

∫ D0

0
pa(x)dx+ (wa,0 − wc,0)

∫ D0

0
xpa(x)dx

= wc,0D0pa,x≤D0(D0) + (wa,0 − wc,0)UCa,x≤D0(D0).

(14)
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Figure 2: Probablities (p), Expected Passenger Time (UC) and Weighted Expected Passen-
ger Time (wUC) as functions of the (sum of) the chosen supplements (x). Different curves
for supplements being less than D0 (in-time), between D0 and D1 (over-time), and their
sum (total-time), on the vertical axis. x on the horizontal axis. All units are in minutes. (a)
is the legend for (c), (e) and (g). (b) is the legend for (d), (f) and (h).



Note that UCa,x≤D0(D0), in this weighted case, has been redefined as
∫D0

0
xpa(x)dx

instead of
∫D0

0
D0pa(x)dx, in the unweighted case. From the context it will be clear what

we mean with it.
We derive the needed expressions for probabilities and unit costs as

pa,0≤x≤D0(D0) =
∫ D0

0
ae−axdx = 1− e−aD0

UCa,0≤x≤D0(D0) =
∫ D0

0
xae−axdx = 1−(aD0+1)e−aD0

a
.

(15)

Note that some terms in (14) may become negative, for example when wa,0−wc,0 < 0,
but the total value of wUCa,x≤D0(D0) will always be positive. The same holds for the next
interval, (D0, D1) where,

wUCa,D0≤x<D1(D0, D1)

=
∫ D1

D0
(wa,0D0 + wa,1(x−D0) + wc,1(D1 − x))pa(x)dx

= ((wa,0 − wa,1)D0 + wc,1D1)
∫ D1

D0
pa(x)dx+ (wa,1 − wc,1)

∫ D1

D0
xpa(x)dx

= ((wa,0 − wa,1)D0 + wc,1D1)pa,D0≤x≤D1(D0, D1) + (wa,1 − wc,1)UCa,D0≤x≤D1(D0, D1),
(16)

where we derive the expressions for probabilities and unit costs as

pa,D0≤x≤D1(D0, D1) =
∫ D1

D0
ae−axdx = = e−aD0 − e−aD1

UCa,D0≤x≤D1(D0, D1) =
∫ D1

D0
xae−axdx = (aD0+1)e−aD0−(aD1+1)e−aD1

a
.

(17)

Based on

wUCa,Dn−1≤x<Dn(D0, D1, ..., Dn−1, Dn)

= (
∑n−1

i=0 (wa,i − wa,i+1)Di + wc,nDn)pa,Dn−1≤x≤Dn(Dn−1, Dn)
+ (wa,n − wc,n)UCa,Dn−1≤x≤Dn(Dn−1, Dn),

(18)

one can prove that the formula (16), generalized for N subsequent chances on the next
action, becomes

wUCa,0≤x<DN (D0, D1, D2, ..., DN )

=
∑N

n=0[(
∑n−1

i=0 (wa,i − wa,i+1)Di + wc,nDn)pa,Dn−1≤x≤Dn

+ (wa,n − wc,n)UCa,Dn−1≤x≤Dn ]

=
∑N−1

n=0 ((wa,n − wa,n+1)Dnpa,Dn≤x≤DN )

+
∑N

n=0(wc,nDnpa,Dn−1≤x≤Dn + (wa,n − wc,n)UCa,Dn−1≤x≤Dn),

(19)

where the probabilities p and unit costs UC take the form as in equation (17), with the
respective indices.

As in the previous case without the weights, we demonstrate that this weighted unit
objective function, considered as a function of D0, with fixed Di,∀i > 0, has a minimum for
a certain D0. Figure 2(g) shows this for the subjective time unit weights wa,0 = 1.0, wa,1 =
1.5, wa,2 = 2.0 and wc,0 = 2.0, wc,1 = 3.0 and wc,2 = 4.0. If the weights would all be 1
we get the same cost curves as in Figure 2(e).

The total cost has now increased since for every time unit a weight factor equal or bigger
than 1.0 is used. We also see that the minimum cost is now shifted to about D0 = 12. That
the optimal supplement is bigger here stems from the fact that the higher annoyance wc,i

of the time units after having missed the consecutive next action instances leads to a higher
cost for supplements D0 that are so low that they often cause such a miss. So the subjective
appreciation of each type of time unit can have an effect on the optimum supplement value.

http://www.wolframalpha.com/input/?i=Integral%28a+exp%28-a+x%29%2C+%28x%2C+0%2C+D0%29%29
http://www.wolframalpha.com/input/?i=Integral%28x+a+exp%28-a+x%29%2C+%28x%2C+0%2C+D0%29%29
http://www.wolframalpha.com/input/?i=Integral%28a+exp%28-a+x%29%2C+%28x%2C+D0%2C+D1%29%29
http://www.wolframalpha.com/input/?i=Integral%28x+a+exp%28-a+x%29%2C+%28x%2CD0%2C+D1%29%29


Note that the formula (18) for wUCDn−1,Dn
with subjective weights, simplifies to

the formula for UCDn−1,Dn
for the case where all weights are equal to 1 case in (11).

Also, the formulas (18) and (19) remain even valid if another delay probability distribution
than the negative exponential is chosen. Of course the corresponding pa,Dn−1≤x≤Dn and
UCa,Dn−1≤x≤Dn

have to be recalculated then.
By simply taking the minimum of the objective function, we are now able to calculate

the optimal supplement that should be inserted in the case where only one probabilistic
delay plays a role. Sometimes however, two consecutive activities with their own delay
distribution will occur. We treat this case in the next section.

5.2 Pair of Two Subsequent Actions

Sum of Delays
We consider two subsequent actions a and b. Their probabilistic delay variables are called
x and y respectively. Again, we can measure the occurrences of delays for both processes
and fit a normalized negative exponential through these measurements. This gives{

pa(x) = ae−ax

pb(y) = be−by.
(20)

The fitting is done similarly to the one dimensional case and gives for actions a and b,
for their respective expected delays, also called a and b:{

a = 1/da
b = 1/db.

(21)

We suppose the variables x and y and their distributions are independent, which could
be a simplification of reality.

In train planning, the most important times are the ones where a train leaves a station
after a stop. This is the latest time a passenger can catch the train, are the times to be
published and respecting them in real time is what matters most to passengers. This is the
promise to the customer that has to be kept as good as possible. Traditionally arrival times
are also published. This is practical for a passenger to be able to plan the activity after his
train arrival. But consider that it is generally worse to miss your train at departure than being
a few time units later at arrival.

We consider a to be a ride action. b can then be a subsequent dwell, transfer or sink
action. Dwell means waiting in a station inside the train. Transfer means a transfer to
another train in the same station. Sink means the passenger exits the station and the train
system. Dwell and transfer actions have endings that can be delayed. For a sink, a delay is
not useful to model since the time for sinking is not part of the train service model.

To mathematically formulate expected passenger time, we are first interested in the prob-
ability that the summed delay x+y of both actions together is smaller or bigger than a certain
supplement D, that is supposed to statistically, mostly absorb this summed delay. We also
will calculate the associated time costs of introducing this supplement. Balancing probabil-
ities and respective costs, we will obtain closed formulas for the total cost of introducing a
supplement D on a subsequent pair of actions. Weighting these costs with the number of
passengers on the second action of each pair, we arrive at a formula for the total cost of each
fork structure. A fork is the union of a ride edge and its directly subsequent, unique dwell
edge, unique sink edge and potentially multiple transfer edges to different other trains. In



Figure 1, a fork can be identified as a collection of a blue (ride) rectangle and its right direct
neighbours: the yellow (dwell), orange (transfer) and red (exiting) rectangles.

Our graph, inherently present in the representation in Figure 1, is set up so that a dwell
edge combines all passenger flows dwelling in one edge, irrespective of their origin and
destination. Similarly a source edge combines all passengers in one edge, irrespective of
their destination and a sink edge all passengers in one edge, irrespective of their origin.

In Time Cost
Contrary to the one dimensional case in the previous paragraph, we will immediately con-
sider the most general case of weighted, subjective time units. If all time units are considered
to have the same weight, the w values all equal 1.

The cost of suffering a delay x on action a (e.g.: ride) as well as a delay y on action b
(e.g.: dwell) while we are still in time for the next ride start is

wa,0x+ wb,0y, (22)

where wa,0 is the possibly subjective weight for an action a in these conditions. Simi-
larly for wb,0.

If we are still in time, meaning the supplement D0 against delay, is not exceeded yet,
some time until D0 is left over. Passengers will wait after actions a and b have completed,
during this time D0 − x− y. This time also has to be accounted for and has an annoyance
weight of wc,0. So this cost is

wc,0(D0 − x− y). (23)

Together, the total in time cost of experiencing a delay x+ y ≤ D on these two actions
is the sum of (22) and (23), so

wa,0x+ wb,0y + wc,0(D0 − x− y). (24)

Note that for wa,0 = wb,0 = wc,0 = 1, the total in time cost is D0.
For every combination of delays x and y, we now have to see how often they occur. This

is given by the combined probabilities

pa(x)pb(y). (25)

Integrating over x+y ≤ D0 which forms a rectangular triangle gives us the in time cost

wUC0≤x≤D0

=
∫ D0

0

∫ D0−x

0
(wa,0x+ wb,0y + wc,0(D0 − x− y)) pa(x)pb(y)dydx

= wc,0D0

∫ D0

0

∫ D0−x

0
pa(x)pb(y)dydx

+ (wa,0 − wc,0)
∫ D0−x

0
xpa(x)pb(y)dydx+ (wb,0 − wc,0)

∫ D0−x

0
ypa(x)pb(y)dydx

= wc,0D0pavb,0≤x+y≤D0

+ (wa,0 − wc,0)UCavb,x,0≤x+y≤D0 + (wb,0 − wc,0)UCavb,y,0≤x+y≤D0 .
(26)

For a 6= b we get



pa6=b,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
(ae−axbe−by)dydx = a(1−e−bD0 )−b(1−e−aD0 )

a−b

UCa6=b,x,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
x(ae−axbe−by)dydx

= 1−(aD0+1)e−aD0

a
− [e−aD0((b− a)D0 − 1) + e−bD0 ] a

(a−b)2

UCa6=b,y,0≤x+y≤D0 =
∫ D0

0

∫ D0−y

0
y(ae−axbe−by)dxdy

= 1−(bD0+1)e−bD0

b
− [e−bD0((a− b)D0 − 1) + e−aD0 ] b

(a−b)2
.

(27)

Care is taken that the last version of each expression in (27) only has negative exponents,
so that numerical stability is guaranteed and overflow is avoided.

When a = b we would get a division by zero for each of the expressions in (27), so we
recalculate for this special case. This gives

pa=b,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
(ae−axae−ay)dydx = 1− (aD0 + 1)e−aD0

UCa=b,x,0≤x+y≤D0 =
∫ D0

0

∫ D0−x

0
x(ae−axae−ay)dydx = e−aD0 (−aD0(aD0+2)−2)+2

2a

UCa=b,y,0≤x+y≤D0 =
∫ D0

0

∫ D0−y

0
y(ae−axae−ay)dxdy = e−aD0 (−aD0(aD0+2)−2)+2

2a
.

(28)

Over Time Cost
The integral in time delay cost wUC0≤x≤D0

for delays below D0 in (26) gives us a cost
supposing x + y ≤ D0. Since x + y > D0 can also hold, we calculate this corresponding
over time cost next.

When x + y = D0, the ride action after a and b takes place immediately and can still
just be caught by the passengers. If x+ y > D0, they will miss this next action. For action
b being a transfer, this means they will have to catch the next train in the same direction.

Suppose the next leaving train in the desired direction leaves at time distance D1 > D0.
Then we get for the cost part for x+y between D0 and D1, which forms a trapezium which
fits snuggly against the triangle area, from (26) as

wUCD0≤x≤D1

=
∫ D0

0

∫ D1−x

D0−x
[(wa,0 + wb,0)/2 ·D0 + (wa,1 + wb,1)/2 · (x+ y −D0)

+ wc,1(D1 − x− y)] pa(x)pb(y)dydx

+
∫ D1

D0

∫ D1−x

0
[(wa,0 + wb,0)/2 ·D0 + (wa,1 + wb,1)/2 · (x+ y −D0)

+ wc,1(D1 − x− y)] pa(x)pb(y)dydx
= ((wa,0 + wb,0)/2− (wa,1 + wb,1)/2) ·D0 + wc,1D1)

(
∫ D0

0

∫ D1−x

D0−x
pa(x)pb(y)dydx+

∫ D1

D0

∫ D1−x

0
pa(x)pb(y)dydx)

+ ((wa,1 + wb,1)/2− wc,1)

(
∫ D0

0

∫ D1−x

D0−x
xpa(x)pb(y)dydx+

∫ D1

D0

∫ D1−x

0
xpa(x)pb(y)dydx)

+ ((wa,1 + wb,1)/2− wc,1)

(
∫ D0

0

∫ D1−y

D0−y
ypa(x)ypb(y)dydx+

∫ D1

D0

∫ D1−y

0
ypa(x)pb(y)dxdy)

= ((wa,0 + wb,0)/2− (wa,1 + wb,1)/2) ·D0 + wc,1D1)
(pavb,D0≤x+y≤D1,p1 + pavb,D0≤x+y≤D1,p2)

+ ((wa,1 + wb,1)/2− wc,1)(UCavb,x,D0≤x+y≤D1,p1 + UCavb,x,D0≤x+y≤D1,p2)
+ ((wa,1 + wb,1)/2− wc,1)(UCavb,y,D0≤x+y≤D1,p1 + UCavb,y,D0≤x+y≤D1,p2),

(29)
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where a v b stands for the relation between a and b: equality or non-equality and p1
stands for part 1, the parallellogram and p2 for part 2, the triangle, that together make up
the trapezium over which we integrate here. Note that the swapping of integration order of
x and y is only done to make the temporary resulting formulas as simple as possible. For
each line in (29), the sum of two double integrals over the full trapezium is the same when
integrated in both integration orders.

The averaging of weights in (wa,i + wb,i)/2 appears because for a time x + y where
D0 ≤ x+ y ≤ D1, it is not known which part of the time was spent for activity a versus b.

The formulas for the unit probabilities and unit cost in this D0 to D1 case for a 6= b are

pa6=b,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
ae−axbe−bydydx

= (e−bD0 − e−aD0 − e−bD1 + e−aD0−b(D1−D0)) a
a−b

pa6=b,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
ae−axbe−bydydx

= − e−b(D1−D0)−aD0 a
a−b

+ e−aD1 b
a−b

+ e−aD0

UCa6=b,x,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
xae−axbe−bydydx

= ((−aD0 + bD0 − 1)e−aD0 + e−bD0)(1− e−b(D1−D0)) a
(a−b)2

UCa6=b,x,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
xae−axbe−bydydx

= [(D0(b− a)− 1)e−aD0−b(D1−D0) + (D1(a− b) + 1)e−aD1 ] a
(a−b)2

+ [(aD0 + 1)e−aD0 − (aD1 + 1)e−aD1 ]/a

UCa6=b,y,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−y

D0−y
yae−axbe−bydxdy

= [(−bD0 + aD0 − 1)e−bD0 + e−aD0)(1− e−a(D1−D0)] b
(a−b)2

UCa6=b,y,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−y

0
yae−axbe−bydxdy

= [(D0(a− b)− 1)e−bD0−a(D1−D0) + (D1(b− a) + 1)e−bD1 ] b
(a−b)2

+ [(bD0 + 1)e−bD0 − (bD1 + 1)e−bD1 ]/b.

(30)

For the a = b case the equivalent expressions are

pa=b,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
ae−axbe−bydydx = aD0(e

−aD0 − e−aD1)

pa=b,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
ae−axbe−bydydx = e−aD1(a(D0 −D1)− 1) + e−aD0

UCa=b,x,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−x

D0−x
xae−axbe−bydydx = aD0

2(e−aD0 − e−aD1)/2

UCa=b,x,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−x

0
xae−axbe−bydydx

= [e−aD1(a2(D0
2 −D1

2)− 2aD1 − 2) + 2(aD0 + 1)e−aD0 ]/(2a)

UCa=b,y,D0≤x+y≤D1,p1 =
∫ D0

0

∫ D1−y

D0−y
yae−axbe−bydxdy

= aD0
2(e−aD0 − e−aD1)/2

UCa=b,y,D0≤x+y≤D1,p2 =
∫ D1

D0

∫ D1−y

0
yae−axbe−bydxdy

= [e−aD1(a2(D0
2 −D1

2)− 2aD1 − 2) + 2(aD0 + 1)e−aD0 ]/(2a).
(31)
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As in the previous paragraph, we could calculate a next cost term for wUCD1≤x≤D2
but

from Figures 2(e) and 2(g) we know that this will be a low cost and we can safely ignore
it. So the total local cost we consider is wUCloc = wUC0≤x+y≤D1

= wUC0≤x+y≤D0
+

wUCD0≤x+y≤D1 which can be calculated from (30) or (31).
Figure 2(d) shows a plot of the probability functions for the two subsequent action cases.

It differs from Figure 2(c) in that now both actions have delay distributions. Figure 2(d)
shows probability curves of which the second derivative changes its sign. This is due to the
convolution of these two distributions.

Figure 2(f) represents the total costs and its component costs from 0 to D0 and from D0

to D1 for objective time unit costs, all equal to 1. The minimum cost is obtained for about
D0 = 11 time units.

Figure 2(h) represents the same cost for the subjective time unit costs, wa,0 = 1.0,
wa,1 = 1.5, wb,0 = 1.0, wb,1 = 1.5, wc,0 = 2.0 and wc,1 = 3.0. We see that the minimum
in Figure 2(h) is not the same as in Figure 2(f). Now the minimum cost is obtained for
D0 = 12 time units. Similarly to the one dimensional case higher annoyance for time units
spent after having missed a next action results in introduction of a bigger supplement D0 to
help avoid this.

5.3 Optimal Sum of a Range of Supplements for (Ride,Transfer)-Action Pair

We now have derived the objective function for the (ride, transfer) action pair. We show in
Figure 3 that we are able to calculate the predicted optimum for the sum of two supplements
associated with two consecutive actions a and b. We show the results obtained for different
combinations of values of expected delays for action a (0, 1, 4, 10, 20) and b (0, 1, 2, 4). All
units can be seen as minutes. D1 is supposed to always be 60 here. The case (0, 0), meaning
no expected delay on either action, results in no supplements at all. One can also see that an
increase in any of the two expected delays results in an increased optimal supplement sum,
which is only logical.

Note that these optima are only valid for one action pair. A single supplement can
occur in multiple action pairs and their respective local objective functions. Each can have
a different optimum value. The global optimization will find a trade-off between these local
optima. Section 6 describes how this is done.

5.4 Specialization to All Flow Types: Different Combinations of In Time and/or Over
Time Costs

We have derived the objective function for a specific single action and for the (ride, transfer)
action pair. These are the most general cases. The other three cases, as mentioned in Table
1 can be derived from it. Departing passengers only have an over-time cost and no in-time
cost. Through and arriving passengers only have an in-time cost and no over-time cost. The
resulting functions are given in Figures 4(a) to 4(d).

5.5 Linearization

To be able to use the derived objective function in an optimization for a train service network
for an entire country, we want to use linear programming solvers. This means that our
objective function has to be linearized.
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Figure 3: Supplement Sum with Minimal Cost for a Range of Action Pair Expected Delays



(a) Departing Passenger Objective Function (b) Through Passenger Objective Function

(c) Transfer Passenger Objective Function (d) Arriving Passenger Objective Function

Figure 4: Expected Passenger Time as Objective Functions of sum of supplements chosen
for the four Passenger Flow Types.

There are two options here to linearize the curves of the calculated objective functions in
Figures 2(e), 2(f), 2(g) and 2(h). One is to discretize the independent variable to some fixed
resolution, like a minute or a tenth of a minute. The other is to approximate the curves with a
number of line segments, which allows for the independent variables to remain continuous.
When inspecting these objective functions, one can see that they are quite smooth. There
are no sudden peaks or dips. This pleads for the second option. With only two line segments
the minimum resulting from the intersection of the two line segments is already very close
to the minimum of the original curves. For the 2-segment-approximation we use the least
squares method. We also tried the first option with a fixed resolution of a tenth of a minute,
but this resulted in many variables and an optimal schedule calculation times of a few hours
for just 20 trains. This also convinced us that the segment approximation method should
result in a faster yet accurate tool. The result of the linearizations are shown in the Figures
4(a) to 4(d) by the approximation of the green curves by the red segments.



A black vertical line indicates the supplement that was chosen. In the cases 4(c) and
4(d) this results in the real local minimum. In the cases 4(a) and 4(b) the results are close
to the local minimum. This can happen when constraints or local objective functions in
other locations of the schedule play a more important role. We now explain how the local
objective functions are composed to form the global objective function.

6 Recomposing the Global Objective Function: Simply Summing

To evaluate the expected passenger time of a schedule, we need to look at all action pairs
present in the planned schedule and see how these contribute to the total passenger time.

In the previous paragraphs, we convoluted distributions of pairs of subsequent actions,
of which the first is always a ride action. In so doing, we formed forks of actions for which
we obtained a (weighted) unit time objective function. By multiplication with the correct
number of passengers present on these actions, we obtain the total cost of each action pair.

The weighted global objective function for the whole schedule is just the sum of all
local weighted objective functions. This is the case because, (1) we consider all passenger
minutes equal and (2) we don’t convolute the delay distributions across actions of different
(subsequent) forks. The second reason implies that we will actually determine a schedule
that is more robust than the real minimal expected passenger time would require. Our
schedule will have the advantage though that ride to next ride departure times are also more
dependable.

So our expected passenger time, which is the objective function to be minimized for
schedule optimization, becomes

wGC(D0(E)) =
∑

e∈Esrc
fe · wUCpredpredride(e),predwell(e)(D0,e,succride(e))

+
∑

e∈Ed∪Etr∪Esnk
fe · wUCpredride(e),e(D0,predride(e),e),

(32)
where wGC is the weighted global cost, E is the graph of all actions in the train service

network, D0(E) is a shorthand notation for all D0 that are present in the graph E, Ed is the
set of all dwell edges, Etr is the set of all transfer edges, Esnk is the set of all sink edges,
succride(e) is the ride successor edge associated with edge e ∈ Esrc, which is also the
successor edge of edge e. preddwell(e) is the ride predecessor edge associated with edge
e ∈ Esnk, which is also the predecessor dwell edge of the successor ride edge succride(e)
of e. predpredride(e) is the ride predecessor edge associated with edge preddwell(e) of
e ∈ Esnk. predride(e) is the ride edge associated with edge e, which is also always the
predecessor edge of edge e. fe is the local passenger flow over that action or edge e. Note
that only flows over non ride edges are directly present. The ride flow is simply the sum of
all flows on actions leaving from that ride action, and since flows for all these next actions
are present, the ride flows are present implicitly in the sum. D0,ea,eb is the D0 parameter for
that specific edge sequence pair (ea, eb) and wUCea,eb its weighted local objective function.

The last three columns in Table 2 structurally summarize what quantities are used in
(32) for each of the four passenger flow types. The column Flow of Action indicates the
action that determines the number of passengers on each action pair. Note that the number
of ride passengers is not present directly in any of the four cases, but as Figure 1 shows, it
equals the sum of dwell, transfer and sink passenger numbers subsequent to the ride action
considered. If we consider all terms in this sum, we account for every passenger correctly.



Table 2: Four Passenger Flow Types, their Corresponding Action Sequences, the Action
Edges Used and their Time Cost Types

Passenger Action Action Time Flow of Edge Edge
Flow Type a b Cost Action a b
Departing (Source) Ride in Source PredPredRide PredDwell
Through Ride Dwell over Dwell Ride Dwell
Transfer Ride Transfer in+over Transfer Ride Transfer
Arriving Ride (Sink) over Sink Ride

The quality of a given schedule with given D0,e,∀e can now be directly calculated from
(32). For the sink edges, the two action formulas may be used with an expected delay of
db = 0 or very low. This essentially results in using the one action formula on the associated
ride edges, which can of course be used directly as well.

7 Knock-On Delays

In a similar way as the derivations made previously, we also derived a knock-on objective
function for each couple of trains using the same piece of track. This is a function of
the heading time between these two trains. Since in our schedule optimization, the order of
trains on a track unit is unknown in advance, a knock-on cost between each of the N∗(N−1)
couples of the N trains is added. When train a is scheduled very close before train b two
factors increase the total knocked-on passenger delay on b. One is a high probability of
delay on train a. The second is a high number of passengers on train b, since they are
the passengers experiencing the knock-on delay. These factors are present in our knock-on
objective function. We have used these knock-on costs in train schedule optimizations of all
periodic passenger trains in Belgium of which many pairs have train tracks in common and
even though there are many of them, they don’t significantly increase the computation time.

8 Results

We have constructed a model with all necessary constraints and with the objective function
derived here, for an increasing number of trains. The starting timetable is the one for all
trains departing between 7am and 8am on 13 March 2013. We used Gurobi 5.1.0 as the
MILP solver and ran it, set to 8 solver threads, on an Apple iMac with a 3.4 GHz Intel i7
processor and with 16GB 1333 MHz DDR3 Memory. The gap desired was set to what was
obtained as the gap of the first returned solution in earlier trials. Our results are given in
table 3.

The numbers of model variables (#columns) and constraints (#rows) both grow rapidly
as trains are added, but the pre-solver is usually able to reduce both numbers by about 50%.
For the last case, IC IR L P, we have rescheduled all 186 periodic (IC IR L) trains, as well
as the 17 non-periodic peak (P) trains departing between 7am and 8am. For each ride and
dwell action we assumed an expected primary delay of 3% on top of its minimum time. All
periodic trains are repeated every hour. The P trains occur just once in practice, but due to
our cyclic timetable, time slots are automatically reserved for them in every non-peak hour
too. Outside the peak period, these empty P slots can possibly be used for freight trains if
desirable.



Table 3: Scalability of our Integer Linear Programming Model with necessary Constraints
and the Derived Objective Function

model model solver MILP passenger missed
train trains rows col- time gap time transfer
types umns reduction probability

(#) (#) (#) (s) (%) (%) (%)
IC 43 18747 13361 50 24.30 10.73 2.95
IC IR 82 48267 33035 449 32.35 12.38 3.11
IC IR L 186 102652 68504 2426 32.80 10.03 2.31
IC IR L P 203 225132 158860 3706 38.27 7.12 2.43

Compared to the IC IR L P-timetable currently in operation, our optimized timetable has
some advantages compared to the current one. First, it respects all minimum ride- and dwell-
times without exception. Second, it respects all headway time buffers of 3 minutes between
all train pairs on the same track section. Third, our calculations show that the average chance
of missing a transfer in the current timetable is 34.68% while in our optimized timetable it
is only 2.43%. The expected passenger time of our optimized schedule is 7.12% lower than
the original schedule. This result is obtained with supplements on ride and dwell actions up
to 15 minutes are allowed. Fourth, generating our schedule only takes 3706 seconds, while
it takes many human planners many months to generate the current timetable.

9 Conclusions

This paper has four main contributions. Firstly, by making a graphical representation as in
Figure 1 it becomes clear that we can decompose a general train network into actions of
five different types: ride and dwell train actions and the source, transfer and sink passenger
actions and then recombine pairs of subsequent actions into four local passenger flow types:
departing, through, transfer and arriving.

Thanks to this, secondly, supposing a general negative exponential delay distribution
for each of these actions, we analytically derived the probability and objective functions for
each of these local passenger flows, according to what matters for them at that location.
For transfers, this includes the probabilistic trade-off for catching or missing a next action.
These local functions of one or two supplement variables, indicate the cost tradeoff and can
be used to evaluate a given schedule on quality or even optimality of these supplements.

Thirdly, summing these local functions for the whole schedule delivers a global objec-
tive function that can be used by an optimizing solver directly. We also show how, for linear
solvers, optionally, convex linear approximate functions can be set up.

Lastly, together with the necessary train schedule constraints, we show in Figure 1 that
our method produces a schedule for two trains that, at face value, has apparent merits:
efficiency as well as robustness. We also used the derived objective function in producing a
passenger time optimal timetable for all 203 passenger trains in Belgium. This timetable is
quickly generated and is conflictless, efficient and robust by construction.



References

[1] Dewilde, T., Sels, P., Cattrysse, D., Vansteenwegen, P., “Defining Robustness of a Railway
Timetable”, Proceedings of 4th International Seminar on Railway Operations Modelling and
Analysis (IAROR): RailRome2011,Rome, Italy, 2011.

[2] Goverde, R.M.P., “Optimal Scheduling of Connections in Railway Systems”, Paper presented
at the 8th WTCR, Antwerp, Belgium, 1998.

[3] Goverde, R.M.P., “Synchronization Control of Scheduled Train Services to minimize Passenger
Waiting Times”, Proceedings of 4th TRAIL Annual Congress, part 2, TRAIL Research School,
Delft, 1998.

[4] Goverde, R.M.P., “Improving Punctuality and Transfer Reliability by Railway Timetable Op-
timization”, Proceedings of the 5th TRAIL Annual Congress, TRAIL Research School, Delft,
1999.

[5] Kroon, L., Dekker, R., Vromans, M.J.C.M., “Cyclic Railway Timetabling: A Stochastic Opti-
mization Approach”, Geraets, F., Kroon, L., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds),
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