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Abstract
In an earlier paper on timetabling, we derived a stochastic objective function for what we
consider an ideal timetable: minimal expected passenger travel time in practice. This in-
cludes primary delay distributions and a degree of robustness against these via a knock-on
delay model. This timetable is ideal for passengers who know the timetable in advance and
plan their departure and/or arrival times accordingly. In general, it is considered as a good
service to passengers that the different alternatives to get from an origin to a destination are
equally spread in time. This is even more important for passengers who are not informed
about the timetable or who cannot adapt their time of arrival in the station, for instance
because they want to go home as soon as possible after a meeting. Spreading the trains
decreases the average waiting time at departure and/or waiting time at arrival. In this paper,
we add these terms to the objective function to also provide the advantage of low waiting
times before and after the routes in the resulting timetable. We properly balance benefits of
spreading the trains with the other objectives included in the objective function. The model
solves quickly for a set of 26 trains and 12 sets of alternative routes but still proves to be
difficult to solve for bigger instances.
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1 Introduction

It is generally understood, also by train passengers, that in a train service network with
several alternative trains connecting an origin station with a destination station, spreading
of these alternative trains in time is beneficial for train passengers travelling between these
stations. Assuming, for a certain portion of all passengers, a random arrival pattern, it
decreases the total waiting time at departure and symmetrically, also at arrival. The math-
ematical expression for these expected waiting times as a function of the planned heading
times at departure (or arrival) between these alternative trains is well known and widely
published and used in transport practice. In this paper, this expression is added to the objec-
tive function of our Periodic Event Scheduling Problem (PESP) based Mixed Integer Linear
Programming (MILP) model (Sels et al., 2013b, 2014). When solving this model, the ob-



jective function will be minimised. When doing so, the expected waiting time at departure
and arrival are minimised together with the other components that were already present in
the objective function: expected ride time, dwell time, transfer time and knock-on time. The
result is that we now minimise not only the total journey time, being in vehicle plus transfer
time, but additionally also the excess journey time, being inter-departure plus inter-arrival
waiting time (Zhao et al., 2013). Their sum, actual or observed journey time (Zhao et al.,
2013), is now the new total objective function. This results in improved timetables, as the
objective function approximates better the real expected time that passengers experience in
practice. Indeed, excess journey time is a real expected time component for passengers and
should not be forgotten.

Section 2 gives an overview of research into waiting time and alternative approaches
to realising temporal spreading during timetable construction. We will conclude that our
approach is a novel one. Section 3 formally derives the linear constraints and objective
function terms that will be added to our MILP model later. In the process, some statistics
on the typical number of alternative trains is given for the network of all Belgian passen-
ger trains. Section 3.4 then replaces the constant departure (or arrival) times to variable
ones. Indeed, in the PESP model begin (or end) times of activities are unknown still. As
a consequence, some terms become quadratic and must be linearised. Section 4 discusses
the successful application on a network consisting of 26 Belgian IC trains. We first limit
the objective function to excess journey time without transfer time, then add transfers to the
model, then add more OD-pairs for temporal spreading to the model and then attempt to
tackle train service networks with more trains. The section shows, as is expected, that there
is a noticeable competition between the minimisation of the different time components, es-
pecially between excess journey time and transfer time. Section 5 concludes and hints at
further work that could potentially improve computation times.

2 Related Research Overview and Comparison

Research concerning the advantages of temporal spreading of alternative trains has been
dominated by the analysis of how passengers choose their trains, when they choose to ar-
rive at their station of departure and how this affects their expected inter-departure waiting
time. The published results are described in section 2.1. Section 2.2 discusses which sub-
categories of passengers display random arrival behaviour. While the mentioned research
is very interesting, it is very noticeable how inter-arrival waiting time has been left mostly
unmentioned. We discuss this in section 2.3. Also, less attention has been paid to how
this waiting time should be incorporated in models to construct timetables with the desir-
able property of temporal spreading. The traditional method of timetabling that intends to
realise temporal spreading and a newer method are mentioned in section 2.4. Section 2.5
gives a quick overview of the rationale of our novel method.

2.1 Models of Expected Inter-Departure Waiting Time

The most simplistic model of passengers arriving in their station of departure is one where
it is assumed that a constant number of passengers f arrives during every unit of time. This
implicitly assumes that passengers are not adapting their arrival time to the knowledge of the
train departure times as planned in the timetable. This model is called the random arrival
model. This model has been assumed for studying transit reliability by de Pirey (1971),



Barnett (1974), Bly and Jackson (1974) and Friedman (1976).
Welding (1957), Holroyd and Scraggs (1966) and Osuna and Newell (1972) derived

that, for passengers who are arriving randomly at their station of departure, the expected
waiting time until departure E(w) can be expressed as a function of the average vehicle
planned heading time E(h) (over all heading timesHi in the cyclic timetable period T ) and
the variation coefficient Cv(h) of the real time heading times:

E(w) = E(h)/2 ·
(
1 + Cv(h)

2
)
. (1)

Here, h is the heading time distribution and E(h) is the expected heading time as it can
be calculated from the planned timetable as

E(h) =

N−1∑
i=0

pi ·Hi =

N−1∑
i=0

(Hi/T ) ·Hi =

N−1∑
i=0

H2
i /T, (2)

where pi is the probability of a passenger experiencing heading time Hi in period T .
Cv(h) = σ(h)/µ(h) is the ratio of the standard deviation over the mean, both of the heading
time distribution in real time. Substitution of the right hand side of equation (2) for E(h) in
equation (1) and multiplication by the number of considered randomly arriving passengers
f delivers

E(f · w) = f

2T

N−1∑
i=0

H2
i ·
(
1 + Cv(h)

2
)
. (3)

The general objective is to minimise the expected waiting time at arrival, E(w), in
equation (1). This can be done by either minimising E(h) or Cv(h)

2 or a combination of
both. Note that, for equal temporal spreading between N vehicles in time T , it holds that
E(h) = H = T/N and that otherwise E(h) > H = T/N . The second can be understood,
from equation (2) and realising that the probability pi equals Hi/T , so the probability to
experience a higher heading time during time T is higher than the probability to experience
a lower one. So, when supposing there are no real time delays, E(h) is minimised by equal
spreading of headways in the timetable if the amount of vehicles N per period T is fixed
or otherwise by increasing the number of vehicles N . The value of Cv(h) is decreased by
lowering σ(h)/µ(h), representing the reduction of relative deviations from the timetable
headways. This is done by better control of the timing of vehicles. Islam and Vandebona
(2010) mention thatCv(h) is often used as a measure for reliability. They study bus systems
where planned heading times are all equal. In that case E(h) = H and, assuming a fixed
amount of vehicles, decreasing E(w) can then only be obtained by reducing Cv(h) by
making the timing of the system more reliable. For a train system, often one must, like
when having to insert a freight train between a set of N passenger trains, plan unequal
heading times Hi. In that case, even in the planning E(h) > H occurs. This summarises
the effect of the number of alternative vehicles N , planned vehicle spreading in time E(w)
and reliability Cv(h) on passenger waiting time for randomly arriving passengers. In this
paper we will try to reduce E(w) by reduction of E(h), with fixed number of trains N , so
by the use of optimal spreading only. Reducing Cv(h) is useful but cannot be done via the
timetable.

Later, studies appeared where the more complex behaviour of passengers, adapting their
arrival time at their station of departure to their chosen vehicle planned departure time is
studied (Okrent, 1971; Jolliffe and Hutchingson, 1975; Jackson, 1977; Turnquist, 1978).



Jolliffe and Hutchingson (1975) subdivide passengers in 3 categories. Some fraction q is
supposed to manage to arrive coincidental with the vehicle arrival time and are assumed to
have no waiting time. The remaining fraction (1− q) of passengers is split into a proportion
(1−q)p, who arrive so as to minimise expected waiting time and a proportion (1−q)(1−p)
arrive randomly.

In this paper, we want to optimise the heading times of all trains a passenger going from
a station O to station D can choose, so that the corresponding waiting time stays low. This
will be achieved by minimisation of the total journey time of which this waiting time is a
component. The effect on passengers arriving randomly is described by equation (1). We
suppose they come in a portion r. So their total waiting time is r ·E(w). The primary effect
on passengers waiting time of passengers that shift their arrival times with time δtwhen their
planned vehicle departure time is shifted in a new timetable with δt is zero. This means that
the fixed waiting time of the portion (1− r) of passengers needs not and so will not occur in
the objective function waiting time at departure terms of our timetable optimisation model.
When evaluating the total waiting time, their fixed waiting time x can possibly be added as
fixed amounts, (1− r) ∗ x, which is indeed independent of the timetable.

Bowman and Turnquist (1981) studied passenger arrival patterns at bus stops at seven
locations around Chicago. They write that expected passenger waiting time at a transit stop
is dependent on three things: the distribution of passenger arrival times at that stop, the
planned arrival times of the vehicles at that stop and the deviations in practice from the
arrival times of these vehicles. They use a passenger choice model that is fitted to mea-
surements of passenger arrival times at bus stops. They study the effect of both decreasing
headway times (by adding more vehicles) and decreasing the standard deviation on vehicle
arrival times (by increasing reliability in operations) on expected waiting times. They con-
clude that both can decrease expected waiting time both for the random arrival model and
for the passenger choice model. Bowman and Turnquist (1981) suggest that higher heading
times will lead to fewer random arrival passengers, since they will want to avoid the higher
waiting penalty time. This indicates that our r should in fact be dependent on the number
of vehicles N from O to D per timetable period. This is indeed what Fan and Mechemehl
(2002) also report from their data analysis. They identified a 10 minute vehicle headway as
the transition from random to non-random passenger arrivals.

More recently, the terms excess journey time (EJT) and passenger incidence behaviour
have been added to the transport research vocabulary (Furth and Muller, 2006; Frumin and
Zhao, 2012; Zhao et al., 2013). EJT is the difference between the journey time as implied
by the published timetable and the actual journey time (Zhao et al., 2013). The waiting
time before the first vehicle departs from the moment the passenger arrives at station O and
the waiting time after the last vehicle arrives before the passenger leaves station D are the
two components making up this excess journey time. The second component can also be
seen as inter-departure time of the next transportation system the passenger moves to after
the one considered. Passenger incidence behaviour is the generic name for how passen-
gers interact with the transportation system (Furth and Muller, 2006). Information about
the transportation system can influence how they make choices and use the transportation
system. The above mentioned random arrival model and passenger choice model are two
different passenger incidence behaviours.

The research mentioned above is mainly focussed on accurately measuring in reality
and then fitting and modelling passenger and vehicle arrival distributions and the resulting
expected passenger waiting time. However, we are not aware of any research also incorpo-



rating any of these models in a timetabling method that automatically minimises passenger
waiting time at departure or arrival. This is our focus in this paper.

2.2 Random Arrival Passenger Subcategories

Jolliffe and Hutchingson (1975) mention that the fraction of passengers who are uninformed
or unaware about timetable departure times of their alternative trains, especially during peak
hours, is low. That may be true for some networks, but they are not the only passengers that
show random arrival behaviour. Consider table 1. We will traverse it from left to right.

informed caring adaptable adapting

in time for departure
(1− r)

passenger choice
for transfer model

over time for departure

r
random arrivalfor transfer

unadaptable
not adapting modelnot-caring

uninformed

Table 1: Sub-categories of passengers: fraction (1-r) showing passenger choice model be-
haviour and fraction r showing random arrival behaviour.

Amongst the informed passengers , there are some that do not care or don’t want to be
too stressed out about getting the first possible train departure. They are informed but are not
adapting their arrival time to the train departure times available in the timetable. Amongst
the passengers who do care, some cannot adapt, because they have time constrained obli-
gations before arriving at the train platform. For example they have to bring their kids to
the creche at a certain fixed time. We categorise them as unadaptable. Amongst the caring,
adaptable passengers, all will be adapting but only some will be successful and in time for
the aimed train departure (at origin or transfer station) and some will be unsuccessful and
over time for the train departure (again at origin or transfer station). Only the in time pas-
sengers, with fraction (1 − r) should be considered to behave according to the passenger
choice model. For this fraction, temporal spreading of alternative trains will not decrease
their expected waiting time at departure. The rest, fraction r, behave according to the ran-
dom arrival model. For them, spreading of alternative trains will decrease their expected
waiting time at departure and so is useful. We do not claim that the vertical dimensions of
the rows in table 1 are scaled proportionally to the ratios in reality. However, consider that
there are quite some types of passengers making up the ratio r. The table can be used to
derive the value of r if one can estimate the splitting fractions, at each step, going from left
to right through the table.

2.3 Expected Inter-Arrival Waiting Time

Most research focussing on excess journey time mentions inter-departure waiting time but
does not mention inter-arrival waiting time. Temporal spreading at train departure is inspired
by the idea of randomly arriving passengers, which is the best assumption one can make if
no more detailed information is known about passenger incidence behaviour. Similarly,
spreading at the arrival side of the transportation system considered is desirable because
one wants to minimise waiting time for the transportation system coming after the system a
timetable is being constructed for. So at the arrival side, we suppose a waiting time occurs,
according to the same model as for the waiting time occurring at the departure side.



2.4 Approaches to Realise Temporal Spreading of Trains

Within the PESP approach to timetabling (Serafini and Ukovich, 1989; Schrijver, 1993;
Nachtigall, 1996; Goverde, 1998a,b), the usual approach to enforce constant heading times
between trains along the same path is the use of regularity constraints (Peeters, 2003; Kroon
et al., 2007; Liebchen, 2006, 2007; Caprara et al., 2007; Kroon et al., 2009; Caprara et al.,
2011; Sparing et al., 2013). A regularity arc in the PESP model connects two departure
times of alternative trains and imposes a fixed heading difference (modulo the timetable pe-
riod T). We think that sometimes deviation from this optimal spreading should be allowed
since minimisation of other expected time components is also important. Secondly, the en-
forcement of spreading is intended for the portion r of passengers that arrive randomly at
their departure station. The portion (1 − r) of people that adapt their arrival time to a par-
ticular train departure time have no primary beneficial effect. Hard (regularity) constraints
cannot differentiate between two passenger categories while soft spreading can do this via
the objective function. Thirdly, in this approach, these regularity constraints are usually
only applied to trains which have exactly the same path. So routes which contain transfers
do not occur. However this is not a restriction imposed by PESP. We think what matters is
that all alternative train services leading from O to D should, together, be imposed upon
some degree of temporal spreading.

When many groups of alternative trains exist, all trains within a group are repetitions
of each other and one ends up with a problem called multi-module PESP (Galli and Stiller,
2010). For these systems they developed a specific formulation. They claim that the power-
ful PESP based methods developed for uniform modules generally fail for the multi-module
case and demonstrate that their approach helps reduce computation time.

2.5 Minimising Excess Journey Time to Realise Optimal Temporal Spreading of Trains

We think we can formulate the benefit of temporal spreading of alternative trains in terms
of the waiting time it saves for passengers. If we minimise the expected waiting time at
departure and arrival, together with journey time, the resulting timetable will possess the
spreading that is optimal to passengers, not more, not less.

Setting up an integer linear model that achieves minimisation of waiting time, both at
departure and at arrival, in the expected passenger domain and applying it on as many trains
as possible are the topics of this paper. To the best of our knowledge, no research has been
carried out in this direction before.

3 Cost of Waiting for the Next Alternative Train

In section 3.1 the constraints for imposing optimal spreading are derived. Section 3.2 derives
the corresponding objective function terms and proves that these will be minimal at equal
spreading. Section 3.3 shows that the number of alternative trains stays low in practice.

3.1 Derivation of Basic Constraints, Solving the Unknown Order Problem

Sometimes, a train passenger can choose between multiple train routes that lead him from
his origin stationO to his destination stationD. Some of the alternative routes will consist of
a different train or trains visiting the same intermediate stations and some may be composed



of different trains that also visit different intermediate stations. Some connections between
O and D may require a transfer and some may not. In the sequel, we will simply talk about
alternative trains or alternative routes when we mean the collection of all possibilities to
go from O to D using any combination of trains possible. To be able to optimise and also
evaluate any train schedule concerning the cost of waiting for alternative routes, we derive
this cost analytically here. This cost can then be added to the objective function described
by Sels et al. (2013b).

Let RO,D be the set of all route alternatives from station O to D. Say that from O to D,
we have a total of #RO,D = N routes. We define their index set as IN = {0, 1, ..., N −1}.
We choose the couple of different routes ri and rj , where i ∈ IN and j ∈ IN and i 6= j. Let
the variables bi and bj be these routes’ respective planned begin times modulo T in station
O. We now choose to develop our derivation for the begin sides of routes, but the derivation
for the end sides is entirely similar. To be able to define the times in between two subsequent
begin times, we need to know the cyclic order of these begin times. Since, during timetable
optimisation, this is still to be determined in the model, we define a vector b, with the same
N values as vector b, but then sorted in non-decreasing order. Formally, the non-decreasing
order is enforced by

∀(O,D) :

{
∀i ∈ IN \ {N − 1} : bi ≤ bi+1

bN−1 ≥ b0.
(4)

Since we need the same scalar values in the vectors b and b, we declare that b is a
permutation, defined by the permutation matrix pi,j ,of b by imposing

∀(O,D) : ∀i ∈ IN :


bi =

∑
j∈IN pi,j · bj

∀j ∈ IN : pi,j ∈ {0, 1}∑
j∈IN pi,j = 1 =

∑
j∈IN pj,i.

(5)

The expected time of waiting for the next departure from O to D will be a function
of the time differences in between subsequent bi, bi+1 values. We call these delta times
supplements si and define them by

∀(O,D) :

 ∀i ∈ IN \ {N − 1} : si = bi+1 − bi
sN−1 = (b0 + T )− bN−1

∀i ∈ IN : 0 ≤ si ≤ T − δ.
(6)

δ is the smallest time difference in our model, so our time resolution. We used 6 seconds
for δ and 1 hour for T , so T = 600δ. The range of si from 0 up to, but not including T , is
sufficient to allow equation (6) to always have feasible solutions. Indeed, ∀(i, j) ∈ In : 0 ≤
bi ≤ T − δ and so for the non-decreasingly ordered bi it holds that ∀i ∈ IN \ {N − 1} :
0 ≤ bi+1 − bi ≤ T − δ. This also allows the case si = 0. Note that from equation (6), it
follows that

∀(O,D) :
∑
i∈IN

si = T. (7)

Even though the equations (7) are linearly dependent of the equations (6), for computa-
tional reasons, we also impose them in our model.

We now defined all necessary variables to be able to derive the expected waiting time
until first departure in O for D. Note that, in the equations (4), (5) and (6), for notation
simplicity we left out the indices O,D for N, bi, pi,j , bi and si and we will also do so in the
sequel.



3.2 Derivation of Objective Function Terms representing the Expected Excess Jour-
ney Time

The accumulative function of the number of randomly arriving passengers, with assumed
rate f per hour, wanting to go from O to D and randomly arriving in O is a sawtooth function.
From the time bi up to the time bi+1 = bi+ si, the number of randomly arriving passengers
at O has accumulated from 0 up to f · si, at which time they all take the train departing
on route rj . The total average time they have to wait altogether for their route departure is
given by the number of additional people arriving during time dt at origin stationO, namely
f ·dt, multiplied by the time they will have to wait (si−t), and this integrated over t ranging
from 0 to si. This gives

ui =
∫ si
0
(si − t) · f dt = sif

∫ si
0
dt− f

∫ si
0
t dt = f

s2i
2 . (8)

This integration results in the surface of a rectangular triangle from the sawtooth func-
tion, with base si and height f · si. The total expected waiting time for a randomly arriving
passenger arriving at O and wanting to go to D before he has taken his first train is

∀(O,D) : U =
∑
i∈IN

ui = f/2 ·
∑
i∈IN

s2i . (9)

Note the equivalence of equation (9) with the equation (3) from earlier literature. Indeed
si = Hi and f = F/T . One can prove that the function U in equation (9) is minimal when
∀i ∈ IN : si = T/N . Indeed, using a Lagrange multiplier for constraint (7) that has to be
satisfied for all solutions, one gets that the following should be minimised

∑
i∈IN

s2i − λ ·

(
T −

∑
i∈IN

si

)
. (10)

So the partial derivatives to all si and to λ should all be zero. This means

∀(O,D) :

{
∀i∈IN : 2si + λ = 0

: T −
∑

i∈IN si = 0.
(11)

From the top half of equation (11), it follows that all si are equal and from the bottom
part, that they are all equal to T/N . Each second derivative to si equals 2 which is positive,
so si = T/N gives a minimum and not a maximum. �

The bi variables in equations (6) will, when integrated in our complete model, also be
connected (via the pi,j permutation matrix variables) to the bi variables. In our complete
model, the bi variables and also the supplement variables si between them also occur in
other constraints and objective function terms. These hard and soft constraints may influ-
ence the optimal choice of the si here. As a consequence, the optimal solution where all si
are equal, found when nothing apart from equations (4), (5), (6) constrains bi, may not be
the one that is also found when integrating it in our complete model.

Equation (9) is useable for evaluation of a given schedule, but for linear optimisation, a
function that is linear in the model variables si is needed. We will solve this issue here by
linearisation of the ui terms. Every term ui = f · s2i /2, can be approximated by a piecewise
linear function composed of 2 segments, by sampling the curve (si, f · s2i /2) in 3 points.
Since the a priori optimal spreading of begin times for N routes in a time T is at equidistant



intervals of time T
N , as proven, we take this delta time as one of the three sample values for

si. This will lead to a high accuracy approximation of the real cost function in the part of
the range of si that delivers the most optimal solutions. The other necessary sample points
are its lower bound 0 and upper bound T . So, the resulting 3 points are

∀(O,D) : ∀i ∈ IN :


(si,0, ui,0) = (0, 0)

(si,1, ui,1) =
(

T
N ,

f
2

(
T
N

)2)
(si,2, ui,2) =

(
T, f2T

2
)
.

(12)

Equation (12) describes a piecewise linear convex function which can be implemented
in a linear programming formulation by addition of a linear inequality for each of the two
subsequent segments, forming a convex (si, ui) search space together, as follows

∀(O,D) : ∀i ∈ IN :



ui ≥ ui,0 +
ui,1−ui,0

si,1−si,0 · (si − si,0)

= 0 +
fT2

2N2
T
N

(si − 0) = fT
2N si

ui ≥ ui,1 +
ui,2−ui,1

si,2−si,1 · (si − si,1)

= fT 2

2N2 +
fT2

2 −
fT2

2N2

T− T
N

(si − T
N )

= fT 2

2N2 + N
(N−1)·T

(
fT 2N2−fT 2

2N2

)
(si − T

N )

= fT 2

2N2

[
1 + N(N+1)

T (si − T
N )
]
.

(13)

Since the units of f, T,N and si are respectively 1/time, time, 1 and time, the right
hand sides of (13) are indeed two costs in units of time. The fact that our total objective
function is minimised rather than maximised, guarantees that the (si, ui)-points resulting
from the model solution will lie on, rather than above the two line segment function. It is
important to realise that the values f , T , N are constant (manifest) to the model, so the
piecewise linear functions in si can be calculated as known (linear) functions of only the
model variable si at model setup time.

We have now converted the cost function of second degree in (9) into the necessary linear
inequalities (13). Thanks to minimisation of our objective function which contains the terms
ui for every OD-pair, and the enforcement of equation (5) and (6), a non-decreasing order
for bi will be selected and as a consequence, the≥-signs in (13) will turn into =-signs. This
will deliver us the correct, be it linearly approximated cost, instead of only a - possibly weak
- upper bound of it.

3.3 N is mostly Small in Practice

We have derived a model extension that takes care of spreading concerns. This extension
generates equations and costs when ranging over i ∈ IO,D. For each (O,D)-pair, this range
containsN(N−1) elements. The question then is if thisN does not get impractically large.

In practice, passengers choose between different routes leading them from their origin
station O to their destination station D. Our route choice algorithm, as described in Sels
et al. (2011), tries to mimic this behaviour by considering the fastest route. Suppose that
this route has length l. We also consider all routes up to length l(1 + a), where a = 20%.
A transfer is penalised by attributing a time of p = 15 minutes to it. We estimate that



these values for a and p are realistic average for passengers. van der Hurk et al. (2014) use
exactly the same graph for route generation, which they call extended network and for one
algorithm, they call STA, also consider trip duration only and also penalise transfers. They
could validate routes with a route set that passengers take in reality and report that STA is
able to generate 95% of the routes correctly. We can expect that our method in Sels et al.
(2011), if validated, would reach similar percentages of realistic routes and so that it uses
enough relevant information as input.

In our algorithm, we do not consider departure times nor their current spreading in time,
since they are still unknown in the timetable to be computed. We believe that taking this
information from the current timetable would lead to too much bias to the current, possibly
suboptimal, departure times or spreading. To avoid any bias for passengers to prefer routes
with particular departure hours, we suppose an a-priori distribution of departure times as
well as passengers that is ideal in that sense. This means we suppose both passengers and
departure hours to be uniformly spread in the hour.

Train filling levels which passengers may also consider in practice, play no role in our
algorithm. Typically, vehicle assignment and decisions on the numbers of cars per train is
indeed done after timetabling.

In practice, when routing all passengers through the graph of all Belgian passenger
trains, we experience that the number N of alternative routes per OD-pair is usually low.
Figures 1 up to 3 represent histograms indicating per number N of found routes for an OD-
pair, the number of times that that N occurs over all 18268 OD-pairs derived from ticket
sales data in Belgium. Figure 1 shows this for a = 10%, figure 2 for a = 20% and figure
3 for a = 30%. Naturally, when a is increased, for a particular OD-pair, the number N of
found routes cannot decrease. So statistically, when considering all routes, we expect that a
higher a leads to a higher average N . The figures 1 to 3 confirm this.
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Figure 1: a = 10%
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Figure 2: a = 20%
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Figure 3: a = 30%

For a = 10%, a = 20% and a = 30% respectively only 4, 4 and 6 OD-pairs occur that
have a number N between 18 and 32.

The cases with around 32 possibilities for the same OD pair occur between stations
around Brussels, where that many trains per hour with equal or similar journey time from O
to D do indeed occur. So the number of supplements N · (N − 1), introduced in equations
(6), will rarely get big, nor will the same number of boolean variables pi,j in the equations
(5) or the number of added inequalities or couples of added inequalities in (13).



3.4 Linearising pi,j · bj

The modelling method described in sections 3.1 and 3.2, has been tested separately with a
bunch of random but fixed valued bi’s combined with some values for N . The pi,j indeed
give a permutation that makes that bi are sorted in non-decreasing order. With T = 600δ
and N <= 10 the model is typically solved in 40 milliseconds. Since N will typically be
smaller than 6, this will not be a problem. However, solving such a problem corresponds to
determining and calculating the waiting time costs of alternative routes for 1 OD pair only.
When considering all trains in Belgium, about 19000 of OD pairs occur simultaneously.

The model should also work when the vector b contains model variables instead of fixed
constants. Since the bj are variables, (since they are also subject to other PESP constraints),
the terms pi,j · bj in equation (5) are quadratic instead of linear. When a linear model is
required, this issue is easily solved by introduction of the helper variables hi,j ∈ [0, T − δ]
where

∀(O,D) : ∀i, j ∈ IN : hi,j = pi,j · bj . (14)

Equations (14) are then linearised, using the big-M method (Williams, 1994), to the
inequalities

∀(O,D) : ∀i, j ∈ IN :

{
(bl − bu)(1− pi,j) ≤ hi,j − bj ≤ (bu− bl)(1− pi,j)
bl · pi,j ≤ hi,j ≤ bu · pi,j ,

(15)
where bl and bu are the lower respectively upper bounds on all bj . In our case, bl = 0

and bu = T − δ. The top inequality imposes hi,j = bj when pi,j = 1 and imposes nothing
new when pi,j = 0, while the bottom inequality imposes hi,j = 0 when pi,j = 0 and
imposes nothing new when pi,j = 1. This is indeed equivalent to what equations (14)
impose. The top line of equation (5) can now be replaced with its linear equivalent

∀(O,D) : ∀i ∈ IN : bi =
∑
j∈IN

hi,j . (16)

The PESP timetabling model is now extended with linear objective function terms and
linear constraints to include excess journey time. We wil now apply this model to subsets
of the passenger train network in Belgium.

4 Results

This section reports on the results of the application of the model developped in the pre-
vious sections on sets of trains extracted from the Belgian timetable as it is planned for
16/12/2014. All experiments in this paper ran Gurobi v5.6.3 on an Intel Xeon CPU E31240
3.3GHz processor with 16GB RAM.

In section 4.1, in order to study the effect of OD spreading separately, we start with a
proof of concept where no passenger transfers are considered. A network of 26 trains is
used as the test network. Section 4.2 makes a comparison of results obtained with three
approaches: (i) our soft spreading technique via the objective function, (ii) the traditional
hard spreading technique via hard constraints and (iii) a mixed hard-soft method. In section
4.3, we extend the optimisation by including transfers and verify whether total expected
passenger time, and its components (expected ride time, dwell time, transfer time, knock-on
time and excess journey time related to temporal spreading) can all still be reduced and if



so, to what degree. Section 4.4 does the same but for adding more OD-pairs for spreading
optimisation. In section 4.5 the scalability of our method is tested by increasing the network
size input to our model.

4.1 Proof of Concept

Table 2 shows the results of optimisations run with a computation time limit of 600 sec-
onds. The OD-pairs which are to be optimised for spreading, are selected by requiring at
least 1000 passengers per morning peak for them. This results in 12 OD-pairs. The largest
OD-flow occurs between O=Leuven and D=Brussels-Centraal and has F=1751.6 passen-
gers per morning peak. In the case of r=100%, per time unit of time δ of 6 seconds for
each of all morning peak hours together, f = F/T = F/600 = 2.9193 passengers going
to D are assumed to arrive at the origin station O. The 3 Inter City train alternatives for
(O,D)=(Leuven, Brussels-Centraal) are IC:A:2, IC:E:2 and IC:F:2. All three connect O and
D directly without a transfer. In fact, in these 12 OD-pairs, no single train journey with a
transfer occurs.

In the optimisations, the fraction of assumed randomly arriving (and departing) pas-
sengers is varied over r = 0%, 1%, 5%, 10%, 50%, 100%. For each value of r, a separate
optimisation was carried out and a different optimised timetable was computed. Of course,
the original timetable, used as reference is the same for all values of r. For each of the 12
OD-pairs that was selected, on the rows s0, s1, s2, the inter-departure times (heading times)
at O and inter-arrival times (heading times) at D are given, both for the original timetable
(columns orig O and orig D, italic) and for the optimised one (columns opt O and opt D
* (0,1,5,10,50,100), normal). This gives an idea of the improvement in spreading that was
reached. For example, for the case Oostende-Brugge, in Oostende, the original timetable
has a spreading of (s0, s1) = (310, 290) while the optimised timetables, for many but not
all cases of r, deliver the perfect spreading of (s0, s1) = (300, 300). For three trains per
hour, for example, from Brussel-Zuid to Leuven, we get in the original timetable, at O,
(s0, s1, s2) = (264, 180, 156) and at D, (s0, s1, s2) = (182, 154, 264) while in the op-
timised timetable for r = 100%, we get at O, (s0, s1, s2) = (195, 154, 264) and at D,
(s0, s1, s2) = (200, 200, 200), a perfect spreading.

The corresponding excess journey time at O and at D are also mentioned, again both
for the original timetable (on the rows uorig) and for the optimised timetable (on the rows
uopt). Note that the values on the rows uorig, irrespective of their value for r in their column
heading, always refer to the same original timetable. Contrary to this, the values on the rows
uopt, refer to a timetable specially optimised for the r value in their column heading. These
values indicate how much reduction in excess journey time has been accomplished for a
specific OD-pair, for a specific value of r. On the uopt rows a value that is lower than the
value above it, in row uorig, is underlined, indicating that a reduction in excess journey time
has been achieved. It is marked in bold otherwise. The spreading reached amongst the si
must be seen as the consequence of the minimisation of the corresponding excess journey
time as terms ui in the objective function according to their relation given by equation (9).
We see, as we can expect, that roughly spoken, the higher the value for r and f , the more
close the si values get to each other, and to T/N .

The values in the rows uorig are proportional to their r value. The columns where
r = 0% do in fact result in uorig = 0 = uopt. However, we calculated the incidence wait
costs for the timetable reached for r = 0% as if r = 1% to show what an underestimation



r (%) orig 0(1) 1 5 10 50 100 orig 0(1) 1 5 10 50 100
O opt. O, Begin Spread D opt D, End Spread

Leuven to Brussel-Centraal, F=1751.6, f=2.9193, [0: IC:A:2:5xx, 1: IC:E:2:15xx, IC:F:2:17xx]
s0 152 63 86 287 287 156 326 271 68 118 119 119 198 104
s1 175 64 111 202 202 200 162 121 473 401 283 283 248 333
s2 273 473 403 111 111 244 112 208 59 81 198 198 154 163

uorig 1872 1872 9361 18721 93607 187215 1917 1917 9586 19172 95861 191722
uopt 3383 2658 9889 19778 90406 211746 3384 2646 9740 19480 90809 216432

Brussel-Centraal to Leuven, F=1751.6, f=2.9193, [0:IC:F:1:17xx, 1:IC:A:1:5xx, 2:IC:E:1:15xx]
s0 154 81 73 151 197 102 196 182 74 200 295 179 200 200
s1 263 73 323 149 181 299 206 154 450 74 151 221 102 200
s2 183 446 204 300 222 199 198 264 76 326 154 200 298 200

uorig 1845 1845 9223 18446 92232 184465 1847 1847 9235 18470 92351 184701
uopt 3077 2208 9853 17641 101744 175243 3120 2215 9746 17645 101599 175161

Gent-Sint-Pieters to Brussel-Centraal, F=1648.58, f=2.7476, [0:IC:E:1:15xx, 1:IC:A:1:5xx]
s0 156 451 205 300 178 300 391 154 154 396 300 181 299 206
s1 444 149 395 300 422 300 209 446 446 204 300 419 301 394

uorig 3043 3043 15213 30426 152131 304262 3059 3059 15293 30586 152928 305856
uopt 3099 2721 12364 28818 123644 270040 3059 2726 12364 28620 123645 271565

Brussel-Centraal to Gent-Sint-Pieters, F=1648.58, f=2.7476, [o:IC:E:2:15xx, 1:IC:A:2:5xx]
s0 121 541 519 198 402 248 333 151 86 101 219 227 372 286
s1 479 59 81 402 198 352 267 449 514 499 381 373 228 324

uorig 3353 3353 16766 33532 167662 335324 3083 3083 15414 30829 154144 308287
uopt 4069 3791 13794 27587 127358 250279 3731 3561 13266 26193 130765 256590

Oostende to Brugge,F=1177.78,f=1.9629, [0:IC:G:1:18xx, 1:IC:A:1:5xx]
s0 310 66 300 360 300 300 300 310 64 300 360 300 300 300
s1 290 534 300 240 300 300 300 290 536 300 240 300 300 300

uorig 1769 1769 8843 17686 88432 176863 1769 1769 8843 17686 88432 176863
uopt 2842 1767 9187 17667 88334 176667 2860 1767 9187 17667 88334 176667

Brugge to Oostende, F=1177.78, f=1.9629, [0:IC:G:2:18xx, 1:IC:A:2:5xx]
s0 324 64 457 313 300 312 300 300 63 143 289 300 291 300
s1 276 536 143 287 300 288 300 300 537 457 311 300 309 300

uorig 1778 1778 8890 17780 88899 177798 1767 1767 8833 17667 88334 176667
uopt 2860 2251 8850 17667 88475 176667 2869 2251 8845 17667 88413 176667

Brugge to Gent-Sint-Pieters, F=1169.78, f=1.9496, [0:IC:A:1:5xx, 1: IC:G:1:18xx]
s0 310 64 300 240 301 395 300 300 68 296 233 300 234 300
s1 290 536 300 360 299 241 300 300 532 304 367 300 366 300

uorig 1757 1757 8783 17566 87831 175662 1755 1755 8773 17547 87734 175467
uopt 2841 1755 9124 17547 104357 175467 2804 1755 9211 17547 91980 175467

Gent-Sint-Pieters to Brugge, F=1169.78, f=1.9496, [0: IC:A:2:5xx, 1:IC:G:2:18xx]
s0 307 51 183 300 313 300 365 304 536 436 313 300 313 253
s1 293 549 417 300 287 300 235 296 64 164 287 300 287 347

uorig 1756 1756 8778 17556 87781 175563 1755 1755 8775 17550 87749 175498
uopt 2963 2022 8773 17580 87734 183704 2841 2115 8790 17547 87898 179774

Leuven to Brussel-Zuid, F=1154.47, f=1.9241, [0: IC:A:2:5xx, 1: IC:E:2:15xx, IC:F:2:17xx]
s0 152 63 86 287 287 156 326 208 116 116 200 117 200 162
s1 175 64 111 202 202 200 162 271 401 401 117 283 246 106
s2 273 473 403 111 111 244 112 121 83 83 283 200 154 332

uorig 1234 1234 6170 12339 61696 123392 1264 1264 6318 12636 63181 126363
uopt 2230 1752 6518 13035 59586 139560 1743 1743 6435 12870 59759 142100

Brussel-Zuid to Leuven, F=1154.47 , f=1.9241, [0:IC:F:1:17xx, 1:IC:A:1:5xx, 2: IC:E:1:15xx]
s0 264 82 75 153 196 300 195 182 74 200 295 179 200 200
s1 180 71 322 148 180 200 205 154 450 74 151 221 102 200
s2 156 447 203 299 224 100 200 264 76 326 154 200 298 200

uorig 1216 1216 6082 12163 60817 121635 1217 1217 6087 12174 60868 121735
uopt 2035 1448 6480 11640 67344 115495 2056 1460 6424 11630 66963 115447

Gent-Sint-Pieters to Brussel-Zuid, F=1086.56, f=1.8109, [0:IC:E:1:15xx, 1:IC:a:1:5xx]
Brussel-Zuid to Gent-Sint-Pieters, F=1086.56, f=1.8109, [0:IC:E:2:15xx, 1:IC:a:2:5xx]

Table 2: Inter-departure and inter-arrival times si and corresponding excess journey times
u per OD-pair, for optimisations over a set of 26 Belgian IC trains over a range of F · r
passengers with assumed random incidence behaviour. OD spreading threshold=1000, no
transfers, computation time = 600s.



of the value of r by 1% would result in here. One sees that the uopt values in column
r = 0% are much higher than those in column r = 1%. This is of course the case because
at r = 0%, no excess journey time terms are present in the objective function. This indicates
that there are quite severe waiting times expected for randomly arriving passengers if one
does not model the incident waiting time at all. Table 3 shows that, compared to the excess
journey time of the original timetable, an increase of 42% is expected. This indicates that in
the original timetable, already quite some spreading was achieved and that in turn explains
that even if uopt is just a few percentages removed from uorig, the penalties in the objective
function on not spreading must already be delivering their result.

Table 3 shows the column sums over the 12 OD pairs, UO,orig =
∑11

i=0 uOi,orig ,
UO,opt =

∑11
i=0 uOi,opt and similarly for the destinations D, for the different values for r.

The sums for origin and destination are also calculated as UO+D,orig = UO,orig + UD,orig

and similarly for the optimised schedule with index opt. This table shows that for r = 0%
and r = 1% we get an increase of excess journey time compared to the original timetable
of respectively 42% and 12%. For r larger than 5% our model manages a decrease of
between 5% and 7%. We conclude that, for this system of 26 trains and 12 OD pairs,
optimisation with our model is able to quickly (in 600 seconds) reduce the excess journey
time significantly (> 5%) compared to a manually constructed timetable as long as the
fraction r is also significant (≥ 5%). If r is very low (≤ 1%), the excess journey time
terms in the objective function have insufficient weight to strongly influence the solution
and those few r passengers will experience excess journey times that are higher than in a
manual constructed timetable. Other terms then dominate the optimisation of the total time
which is still reduced. This proves that our added excess journey time model serves its basic
purpose.

soli r(%) 0(1) 1 5 10 50 100

sol1
MIP gap (%) 16.6 59.4 37.9 65.2 24.9 15.7

computation time (s) 13 102 48 182 59 242

solend,opt

comp. time=600s⇒ gap (%) 0.65 1.64 1.83 2.62 4.36 5.74
UO,orig 23774 23774 118871 237742 1188710 2377419
UO,opt 34098 26648 112036 226063 1101965 2217687

ratio 1.43 1.12 0.94 0.95 0.93 0.93
UD,orig 23469 23469 117344 234688 1173442 2346884
UD,opt 32947 26386 110901 223033 1093150 2228194

ratio 1.40 1.12 0.95 0.95 0.93 0.95
UO+D,orig 47243 47243 236215 472430 2362152 4724303
UO+D,opt 67045 53033 222936 449096 2195115 4445882

ratio 1.42 1.12 0.94 0.95 0.93 0.94
excess journey time reduction (%) -42 -12 6 5 7 6

Table 3: Total origin-, total destination- and total expected excess journey time U over the
OD-pairs of table 2. Corresponding original to optimised timetable excess journey time
reductions, MIP gaps and computation times. sol1 is the first feasible solution and solend
the one at the set time limit.

4.2 Comparing Soft with Hard Spreading

If one wants perfect temporal spreading of alternative trains, with all si = T/N , for a set
of given OD pairs, we additionally impose

∀(O,D) : ∀i ∈ IN : si = T/N. (17)



soli r(%) 0 1 5 10 50 100

Soft spreading at Origin and Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 0.83 3.57 7.88 8.18 4.74 5.98
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 25612 144050 328453 1189351 2516351

ratio 1.00 0.92 1.04 1.19 0.86 0.91
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 25095 140854 326685 1177353 2429862

ratio 1.00 0.92 1.03 1.19 0.86 0.89
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 50707 284904 655138 2366704 4946213

ratio 1.00 0.92 1.03 1.19 0.86 0.90
excess journey time reduction (%) 0 8 -3 -19 14 10

opt. total time reduction (%) 15.42 15.34 15.17 15.03 15.31 14.96
solend:eval post-opt. evaluation total time reduction (%) 4.6 6.26 5.68 4.81 3.71 4.92

Hard Spreading at Origin and Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 68.07 71.56 66.9 64.75 51.64 39.36
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.76 0.76 0.76 0.76 0.76
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.77 0.77 0.77 0.77 0.77
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 42120 210603 421205 2106026 4212052

ratio 1.00 0.76 0.76 0.76 0.76 0.76
excess journey time reduction (%) 0 24 24 24 24 24

opt. total time reduction (%) 6.89 5.64 7.93 6.79 6.84 6.28
solend:eval post-opt. evaluation total time reduction (%) 5.24 3.68 6.02 4.96 4.61 3.72

Hard Spreading at Origin and Soft Spreading at Destination

solend:opt

comp. time=1200s⇒MIP gap (%) 28.15 31.0 35.59 30.45 21.59 13.59
UO,orig 0 27705 138524 277047 1385237 2770474
UO,opt 0 21060 105301 210603 1053013 2106026

ratio 1.00 0.76 0.76 0.76 0.76 0.76
UD,orig 0 27385 136926 273852 1369259 2738519
UD,opt 0 22979 115029 229787 1176459 2278535

ratio 1.00 0.84 0.84 0.84 0.86 0.83
UO+D,orig 0 55090 275450 550899 2754496 5508992
UO+D,opt 0 44039 220330 440389 2229472 4384561

ratio 1.00 0.80 0.80 0.80 0.81 0.80
excess journey time reduction (%) 0 20 20 20 19 20

opt. total time reduction (%) 14.55 14.41 14.06 14.24 14.23 14.7
solend:eval post-opt. evaluation total time reduction (%) 4.83 3.78 4.07 4.23 3.63 3.27

Table 4: Effects of soft, hard and hard-soft spreading enforcement at Origin and Destination
for 26 trains. OD spreading threshold=1000, no transfers.

The existing permutation matrices and objective function terms defined before can still
reside in the model and continue to fulfil their purpose of correctly measuring the ordering
of train alternatives and excess journey time. To investigate the effects of hard versus soft
spreading, we compared three cases, where we allow 1200 seconds of optimisation time for
each. The first case is one where we apply soft temporal spreading as before on origin and
destination side, so by the model without equations (17). The second case is one where
we enforce hard spreading via equations (17) on both O and D side. In the last case we
apply hard spreading on the origin side, but soft spreading on the destination side. Note
that the MIP gaps of methods with additional hard constraints are typically not reduced as
quickly as methods without these. So we compare solutions for these three cases from the
fair standpoint of what can be achieved in equal computing times.

Table 4 gives the results of these experiments. First of all, in the top third of the table,



for soft spreading at origin and destination, it shows that a total time reduction during op-
timisation of around 15% is again achieved. However, when doing a post-evaluation with
all excess waiting time associated with the 12 OD-pairs, we get a weaker reduction of total
expected time from the original to the optimised timetable in the range of 3.71% to 6.26%.

When forcing spreading the hard way, on both origin and destination side, the middle
part of Table 4 shows that we get systematic savings of 24 percent in excess journey time.
This is the same for all values of r, which is logical. Since the excess journey time is forced
to the minimum possible here, this is also higher than the savings of around 15% for the
soft spreading technique. However, the reductions in total time range between 3.68% and
6.02%, and so, are similar to the soft spreading technique. This means that the increase in
reduction from 15% to 24% in excess journey time has been lost in other time components
of the objective function. In fact, more ride and dwell supplements have been added for
trains between O and D for all train alternatives to match the strict requirements of equal
spreading on both ends. So these trains become ’overstretched’.

To try and avoid this effect of overstretching trains, we now enforce spreading in the
hard way on the origin and in a soft way on the destination side. The lower third of table 4
shows the results. We find that the excess journey time reduction is around 14.5% and the
total time reduction is in the range 3.27% to 4.83%. This is comparable to the results of the
approach with soft enforcement of temporal spreading in the upper third part of the table.

We conclude that the three approaches give similar reductions in total time but the ap-
proach of hard constraints on both sides gives a strong bias towards concentrating mainly on
the reduction of excess journey time with the negative consequence of increasing expected
ride and dwell time more than in the other two cases. For these experiments, which do not
consider the component of expected transfer time, as for the highest total expected time re-
duction at post optimisation evaluation, there is no clear winner method yet. Table 4 shows,
for each value of r, the highest percentage for this time reduction as underlined.

4.3 Adding Transfers

In the previous sections, we studied the minimisation of the excess journey time cost. We
explicitly removed all transfer time costs from the objective function to avoid they would
bias the obtainable reduction percentage of the excess journey time. We now add transfer
time terms in the objective function and will see if our model is then also still able to
reduce the total expected passenger time, including excess journey time and transfer time.
The results are summarised in figure 4. To most clearly show the excess journey time
component, in each case, r is set to 100%. Each of the six pictures shows a bar graph for the
original timetable on the left and the optimised timetable on the right. We consider the same
three cases as in the previous section and so, the organisation of in three rows of figure 4 is
similar to that of table 4. The upper third represents the optimisation with soft enforcement
of spreading on both O and D side. The middle third shows the optimisation with hard
enforcement of spreading on both O and D side. The lower third shows results for hard
enforcement of spreading on the O side and soft enforcement of spreading on the D side.
The left half shows what is reached during optimisation (on the linearised objective function
over the selected portion of OD-pairs for spreading and the selected transfers). The right
half shows the evaluation of the original, non-linearised objective function on all OD-pairs
and on all transfers and represents the end result on which each method should be evaluated.

In all cases, the dark yellow blocks are summed minimal ride and minimal dwell times.



orig.m original orig.s Exp_OptPssngr_Lin_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

66.85%

12.17%

0.00% 0.12%2.06%
4.16%

5.30%
1.41%0.00% 1.35%0.00%

6.57%

improvement:8.87%

MIP gap: 47.16%

best obj.: 1.30E+7

73.36%

4.10%
0.00% 0.30%2.26%

5.87%

5.82%
0.18%0.00% 0.16%0.00%

7.95%

orig.m original orig.s Exp_FullPssngr_Curved_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

60.06%

10.96%

0.00% 0.15%2.16%

4.72%

4.76%
1.28%0.00% 1.33%0.00%

14.57%

improvement:6.55%

64.27%

3.76%
0.00% 0.41%2.31%

7.20%

5.10%
0.23%0.00% 0.38%0.00%

16.34%

orig.m original orig.s Exp_OptPssngr_Lin_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

66.85%

12.17%

0.00% 0.12%2.06%
4.16%

5.30%
1.41%0.00% 1.35%0.00%

6.57%

MIP gap: 57.62%

best obj.: 1.62E+7

improvement:6.28%

71.33%

7.31%
0.00% 0.29%2.20%

6.91%

5.66%
0.65%0.00% 0.30%0.00%

5.36%

orig.m original orig.s Exp_FullPssngr_Curved_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

60.06%

10.96%

0.00% 0.15%2.16%

4.72%

4.76%
1.28%0.00% 1.33%0.00%

14.57%

improvement:3.72%

62.39%

6.54%
0.00% 0.43%2.25%

7.71%

4.95%
0.63%0.00% 0.36%0.00%

14.75%

orig.m original orig.s Exp_OptPssngr_Lin_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

66.85%

12.17%

0.00% 0.12%2.06%
4.16%

5.30%
1.41%0.00% 1.35%0.00%

6.57%

improvement:13.51%

MIP gap: 31.75%

best obj.: 1.01E+7

77.30%

4.09%
0.00% 0.30%2.38%

3.39%

6.13%
0.22%0.00% 0.15%0.00%

6.04%

orig.m original orig.s Exp_FullPssngr_Curved_Time opt.m optimal opt.s

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

OdSpread(s)
OdSpread(m)
KnockOn(s)
KnockOn(m)
Sink(s)
Sink(m)
Transfer(s)
Transfer(m)
Source(s)
Source(m)
Dwell(s)
Dwell(m)
Ride(s)
Ride(m)

60.06%

10.96%

0.00% 0.15%2.16%

4.72%

4.76%
1.28%0.00% 1.33%0.00%

14.57%

improvement:9.75%

66.55%

3.68%
0.00% 0.44%2.40%

5.12%

5.28%
0.27%0.00% 0.23%0.00%

16.04%

Figure 4: Effects of soft, hard and hard-soft spreading enforcement at Origin and Desti-
nation for 26 trains and adding transfers. OD Spreading threshold=1000, transfer thresh-
old=210, computation time=1200s. Left bars are for the original timetable and right bars
for the optimised timetable. Note the bigger ride and dwell expected time components on
the middle row, representing hard spreading on O and D side.



These are constant and cannot be reduced during optimisation. Any blue shaded block rep-
resents an action that has its time convoluted with the ’preceding’ ride action (Sels et al.,
2011). The (blue shaded) light yellow part represents the summed convoluted ride and dwell
supplement times. The (blue shaded) green block corresponds to time attributed to passen-
gers entering and the red block to passengers leaving the transportation system. Orange
(blue shaded) blocks represent transfer time. Dark orange is the minimum transfer time and
is supposed to be 3 minutes everywhere. Light orange stands for the total expected passen-
ger transfer time due to the transfer supplements. This includes a penalty of 1 hour in case
the transfer is missed. In the left column, there are 745 transfers contributing, which are
the ones considered during optimisation. In the right column, all transfers are considered
during evaluation. The (not blue shaded) light purple colour indicates expected knock-on
time, also passenger weighted (Sels et al., 2013a), between subsequent trains on the same
infrastructure resource. Brown blocks stand for excess journey time for O and D for all 12
OD pairs together, in the left column. All 7601 OD-pairs are evaluated for excess journey
time in the right column. By optimising the timetable, only the light yellow, light orange,
light green, light red, purple and brown parts can be shrunk The dark yellow, dark orange,
dark green, dark red parts correspond to action minima and are the same in any timetable,
so cannot be shrunk.

In the upper-left figure, from the original timetable to the optimised one we get a total
time reduction of 8.87% during optimisation. If we call the left bar 100, the right bar
represents 100-8.87=91.13. The brown excess journey time component is slightly increased
with respect to the original timetable, in absolute terms, from 6.57 out of 100 to 7.95%
of 91.13 = 7.2. The transfer time is also growing from 4.16 to 5.87% of 91.13 so 5.35.
However, the light-yellow-coloured ride and dwell supplements are strongly reduced from
12.17 out of 100 to 4.10% of 91.13 so 3.74. The decrease of ride and dwell supplements
more than compensates the slight increase of expected excess journey time and expected
transfer time. The net result is that total expected passenger journey time decreases.

In the left figure of the middle row, representing hard spreading enforcement on original
and destination side, we see that the total expected time reduction is slightly less, 6.28%.
So the height of the right bar-graph corresponding to the optimised timetable now repre-
sents 100-6.28=93.72. However, the brown block representing excess journey time is now
reduced, from 6.57% down to 5.36% of 93.72=5.02. The orange transfer component grows
from 4.16% to 6.91% of 93.72=6.48, a bigger increase compared with soft spreading en-
forcement. The ride and dwell supplements are reduced from 12.17 to 7.31% of 93.72 so
6.85 which is substantially more than the 3.74 reached with soft spreading enforcement.
Soft enforcement reaches 8.87% total expected time reduction while hard enforcement
reaches only 6.28%. Since total time reduction is the end goal, from this observation, soft
enforcement is clearly preferable. The full evaluation in the right half of the middle row
of figure 4 shows that also when including OD pairs and transfers with fewer passengers
than the ones considered in optimisation, the results are similar and even amplified. The
reduction is 6.55% for soft enforcement but only 3.72% for hard enforcement of spreading.

On the bottom row, we find the figures corresponding to the optimisation with hard
spreading enforcement on the origin and soft enforcement on the destination side. The re-
duction of total time the optimisation achieves is a remarkable 13.51%. This is significantly
better than the other approaches which reached 8.87% and 6.28% total expected time re-
duction. The excess journey time goes from 6.57 on 100 to 6.04 on (100-13.51)=86.49 so
5.22. In absolute terms this is very close to the 5.02 strict spreading on both sides achieves.



Expected transfer time is reduced from 4.16 on 100 to 3.39 on 86.49 so 2.93. This is al-
most the double reduction of the 5.35 and 6.48 we get in the other spreading approaches.
Ride and dwell supplements are reduced to 4.90% of 86.49 so 3.54. Again this is better
than the 3.74 and the 6.85 we saw in the other approaches. So we get better optimisation
results when enforcing more hard constraints. Normally, when keeping the same objective
function, imposing extra constraints to a model cannot result in a better ’optimal’ solution.
But here, the solver handles the model with the extra constraints faster than the one without.
Indeed, in our cases the optimal solution is not reached yet by the solver, which is indicated
by the MIP gaps presented in the left half of figure 4. From top to bottom, at 1200 seconds,
soft spreading achieves a gap of 47.16%, hard spreading a gap of 57.62% and mixed spread-
ing a gap of 31.75%. When we increase the computation time limit to 3600 seconds, the
respective gaps become 41.9%, 58.33% and 31.54%. So between 1200 seconds and 3600
seconds, only the soft spreading model still significantly improves its solution. But even
the best result for mixed spreading at 1200 seconds is not beaten at 3600 seconds by any of
the two other methods. Note that In all cases, both for 1200 seconds and 3600 seconds, the
bound is the same (within a margin of 0.3%), so gaps are comparable.

In the evaluation of all OD-pairs on excess journey time and all transfers in the right
figure on the lower row, we notice a 9.75% net reduction is achieved (in 1200 seconds).
Again, this is significantly better than the 6.55% and 3.72% of the other approaches. One
of the reasons is that transfer time is now slightly reduced instead of significantly growing.
We conclude that, once transfers are included, spreading the hard way on the origin and
spreading the soft way on the destination (or probably also the reverse) is the preferable
tactic for achieving the best results in the shortest time on this network of 26 trains.

4.4 Adding more OD-pairs for Spreading

For the same network of 26 Inter City trains, we now investigate the sensitivity of solution
quality and computation time to the amount of OD-pairs in the model. We reduced the OD-
threshold for consideration in the model of 1000 passengers per morning peak, in steps of
100, as such optimising over more and more OD-pairs. The transfer threshold is set back
to 2000, hoping for low computation times. For each OD-pair, we enforce strict optimal
spreading on the origin side and soft spreading via the objective function on the destination
side, since this seemed the most promising technique in the previous section.

soli OD-threshold for spreading 900 800 700 600 500 400
# OD-pairs in opt.(N ≥ 1) 18 24 36 56 90 128
# OD-pairs in opt. (N > 1) 14 16 22 24 30 31

sol1
MIP gap (%) 23.2 50.1 38.2

computation time (s) 52 107 253

solend,opt

MIP gap (%) 13.2 14.3 17.13
computation time (s) 1200 1200 1200 2400 2400 2400

excess journey time reduction (%) 20.24 20.03 20.72
opt. total time reduction (%) 14.69 14.59 14.10

solend,eval
transfer time reduction (%) -240 -234 -239

post-opt. evaluation total time reduction (%) 4.38 4.65 4.72

Table 5: Effects of adding more OD-pairs for temporal spreading to the optimisation model.
26 Inter City trains. Computation times are 1200s and 2400s.

The results are given in table 5. For the cases F=900, 800 and 700, models are con-
structed which perform temporal spreading of at least 2 alternative trains of respectively



14,16 and 22 OD-pairs. These models could all be optimised in 1200 seconds. Over these
cases, the MIP gap achievable in 1200 seconds rises, yet the reduction of total expected
waiting time stays fairly stable around 14%. The end result reduction when evaluating over
all OD-pairs and all transfers increases somewhat from 4.38% over 4.65% to 4.72%.

For the cases F=600, 500 and 400, models are constructed that perform spreading on
respectively 24, 30 and 34 OD-pairs with more than one alternative train. However, the
imposed time limit of 2400 seconds did not suffice to solve these models.

4.5 Scaling Up to a Larger Network

We tried the approach of soft spreading for both O and D on a network of all 74 Inter City
trains as they are planned for 16/12/2014. The thresholds for OD-pairs to be considered in
optimisation was again set to 1000 and the transfer threshold to 210 passengers per morning
peak. The required gap was set to 95%. This did yield a resulting timetable after about 26.7
hours. Optimisation reduced total expected passenger travel time by 2.76% but post evalu-
ation on all OD-pairs for spreading and all transfers gave an increase of 6.48%. Decreasing
the required gap below 95% could possibly yield a better timetable, but at the expense of
more computation time. Increasing to systems with more than 74 hourly passenger trains
did not result in a solution yet. Since our MILP model without excess journey time can be
solved for all Belgian passenger trains in about 2 hours (Sels et al., 2014), we conclude that
specifically our excess journey time model is not easily scalable yet to larger networks.

5 Conclusions and Further Work

For passengers with random arrival behaviour, we integrated the expected excess journey
time cost into our previous PESP based timetabling MILP model (Sels et al., 2014). This
also required derivation and integration of extra constraints in our model. Our objective
function which represented total expected journey time is now extended to also include
excess journey time for all passengers. This paper shows that this model is indeed still able
to reduce the total journey time, while it also reduces each of the separate components:
ride-dwell supplements, knock-on time and excess journey time as well.

We were unable to solve the model for the network of all passenger trains in Belgium
though. Possibly restricting the range of integers present in the formulation of the excess
journey time cost could be a remedy for this problem. Alternatively, our high computa-
tion times could potentially be reduced by the addition of special cycle sets or a column
generation approach. Also, a multi-module PESP formulation approach could be explored.

Incorporating the secondary effect of the waiting time that passengers experience when
they miss the train they intended to depart with could make the model even more realistic.

The missed transfer penalty of cycle time T, currently assumed in the model, could now
also be adapted as follows. If the transfer takes the transferring passenger on an OD-route
that is contained in the optimised OD-pair spreading set, the N trains can be assumed to be
well-spread, certainly if hard spreading is imposed. So the penalty for missing a train can
be assumed to be about T/N in the average case. This would make a more realistic transfer
model and the transfer time component would make up a smaller portion of the total time.
Since it typically still grows during optimisation, the total time would be further reduced.
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