## Timetabling for Passengers

# Peter Sels ${ }^{1,2,3}$, Thijs Dewilde ${ }^{1}$, Dirk Cattrysse ${ }^{1}$, Pieter Vansteenwegen ${ }^{1}$ 

${ }^{1}$ Katholieke Universiteit Leuven, Centre for Industrial Management/Traffic \& Infrastructure, Celestijnenlaan 300a, 3001 Heverlee, Belgium<br>${ }^{2}$ Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author<br>${ }^{3}$ Infrabel, Department of Rail Access, Frankrijkstraat 91, 1070 Brussels, Belgium

November 25, 2013

## Table of Contents

(1) Business Problem

- Task
(2) Context: Four Major Railway Planning Problems
(3) Cyclic Timetabling
- Previous Research Milestones
- Usual Goal Functions?
- Our Approach
(4) Solution Process Flows
(5) Remapping
(6) Reflowing
- Routing Algorithms
(7) Retiming
- Stochastic Action Model
- Stochastic Goal Function: Expected Passenger Transfer Time
- Grouping per Subsequent Action-Pair
- Grouping per Subsequent Action-Pair towards Cost
(8) Results
(9) Conclusions \& Future Work


## Task

## Belgian Infrastructure Management Company: Infrabel:

"Optimize Passenger Train Service, Minimizing Passenger Travel Time"

## Goals:

Increased: Passenger Satisfaction, Robustness, Capacity Usage, Transfer Efficiency

## Fixed:

Infrastructure, Train Lines, Halting Pattern, Delay Probabilities

## Variable:

Timing: Supplement Times at every Ride, Dwell, Transfer Action

## Specifics:

One Busy Day, Morning Peak Hour

## Task Notes

- Demand by Infrastructure Company, not main operator: NMBS
- Robustness against Delays necessitates Stochastic Approach.
- Minimization Passenger Time implies
- knowledge of local passenger flows
- specific, automatic trade-off between robustness and speedy service.
- Single criterium where all terms have same units: time.


## Goal Function:

Stochastic Total Expected Passenger Travel Time: $G F(E)=\sum_{e \in E} f_{e} d_{e}$

## Constraints:

Periodicity, Symmetry, Regularity, Minimum Action (Ride, Dwell, Transfer) Times, Minimum Headway Times, Macro Approach.

## Four Major Railway Planning Problems

- Line Planning (operator)
- Timetabling \& Platforming (infrastructure company)
- national timetable planning
- solving generated train platforming and routing problem (TPP) for each station
- Material Planning (operator)
- Personnel Planning (operator)


## Cyclic Timetabling: Previous Research Milestones

- Periodic Event Scheduling Problem (PESP): Serafini \& Ukovich: 1989
- Constraint Programming Model (CADANS): Schrijver \& Steenbeek: 1993
- PESP constraints $\rightarrow$ sometimes solves, sometimes doesn't
- goal function: none
- Cyclic Periodicity Formulation (CPF): Nachtigall: 1994
- Based on process times \& (orthogonal) cycle basis
- Application of PESP \& CPF on part of Dutch passenger train system: Peeters: 2003
- CPF finds better solutions
- CPF solves quicker since edge based
- First optimised timetable in practice: Liebchen: 2008
- Berlin Underground: 37 trains
- goal function: minimise for combo of operational cost, dwell-times \& some transfer-times
- saved one metro


## Goal Function Pitfalls?

- too simple
- none
- e.g.: due to no clear/'conflicting' specification of stakeholder(s)
- incomplete: covers only some aspects
- e.g.: focus on minimizing dwell times only
- e.g.: focus on only some transfers
- too complex: multi-stakeholder
- e.g: heterogeneous units: somehow 'adding' operational cost and some robustness measure $\rightarrow$ unbalanced
- e.g: pareto optimization $\rightarrow$ not a unique 'best' solution
- too artificial: indicated by magic constants
- in goal function: e.g.: in adding apples and pears
- in constraints: e.g.: add buffer time up to 5\% of train duration (to compensate for incomplete goal function)


## Goal Function $=$ Expected Passenger Time. Why?

- as simple as possible
- passengers are stakeholder nr 1
- expected travel time is their concern nr 1
- including expected delays automatically trades off between: efficient yet robust service
- complete enough: covers all:
- train actions
- passenger actions (e.g.: all potential transfers)
- no artificial constraints:
- weighted with passenger flows, naturally
- evaluate secondary stakeholders
- (expected) idle time of material $\rightarrow$ operational cost


## FAPESP: Two Phased

## FAPESP



Figure: Two Phased implies Iterations

## Origin-Destination (OD) Matrix

- Wanted
- station to station OD-matrix
- Only Available
- ticket OD-Matrix currently formulated in zones i.o. stations
- currently only station/zone passenger ratios for departing passengers
- currently no station/zone passenger ratios for arriving passengers
- ticket OD-Matrix currently symmetric
- full day periodicity $\rightarrow$ morning-evening symmetry
- morning only: towards Brussels-inwards-outwards symmetry
- Use as follows
- take ticket sales from zone to zone
- diffuse over origin stations according to Entering Passengers
- diffuse over destination stations according to Entering Passengers
- cannot fix symmetry (asymmetric information lost)


## Add to Graph: Ride, Dwell



## Add to Graph: Transfers

## ride

## transfer

$\xrightarrow[\text { time increase }]{\text { space increase }}$


## Potential Transfers

- 'Guaranteed Transfers'
- listed by humans
- criterium = human judgement of 'important'
- about a hundred?
- Potential Transfers
- automatically generated
- criterium $=$ whenever two trains stop in same station, irrespective of flow and timing (both are still unknown)
- > 20000
- all considered in reflowing \& retiming, or in retiming: only the ones with e.g.: $\geq 50$ people transferring


## Graph for Reflowing: Add Source \& Sink



## Graph for Reflowing: All Edge Types

primary edges

## Routing Algorithms \& Results

- Dijkstra: hours
- Modified Dijkstra (includes Priority Queue, single thread): 1 hour
- Modified Dijkstra (includes Priority Queue + OpenMP (8 cores) + OpenMPI (2 machines)): 4 min
- Johnson: to consider


## Reflowing $=$ Deciding on Rectangle Heights


(a) Original Schedule

(b) Optimized Version

## Retiming $=$ Deciding on Rectangle Widths


(c) Original Schedule

(d) Optimized Version

## Add to Graph：Knock－Ons



## Add to Graph: Turn-Around



## Add to Graph: Symmetry (Optional)



## Graph for Retiming: All Edge Types



## Graph for Retiming: Basic Cycles



## Graph for Retiming: Linear Combination of Cycles



## Looks a lot like Miro, right?



## Retiming

Stochastic Action Model

## Action: Negative Exponential Delay Distribution

action
minimum stochastic
time: delay time:
m_a s_a


## In-Time and Over-Time

|  | In-Time | Over-Time |
| :--- | :---: | :---: |
| probability <br> inc. $/$ dec. in $D_{0}$ | $\int_{0}^{D_{0}} p_{a}(x) d x$ | $\int_{D_{0}}^{D_{1}} p_{a}(x) d x$ |
| inc. | dec. |  |
| expected time | $\int_{0}^{D_{0}} p_{a}(x) D_{0} d x$ | $\int_{D_{0}}^{D_{1}} p_{a}(x) D_{1} d x$ |
| inc. $/$ dec. in $D_{0}$ | inc. | dec. |
| departing $=$ ride' + dwell' + source |  | $\checkmark$ |
| through $=$ ride + dwell | $\checkmark$ |  |
| changing $=$ ride + transfer | $\checkmark$ | $\checkmark$ |
| arriving $=$ ride + sink | $\checkmark$ |  |

## Stochastic Goal Function: Expected Passenger Transfer Time



Figure: $D_{0}$ is introduced supplement, $D_{1}>D_{0}$ is delta time of next chance action. Curve maps planned time to expected time.

## Grouping per Subsequent Action-Pair

- departing $=$ ride' + dwell' + source
- through $=$ ride + dwell
- changing $=$ ride + transfer
- arriving $=$ ride + sink



## Retiming

Grouping per Subsequent Action-Pair

## Looks a lot like Mondriaan, right?



## Grouping per Subsequent Action-Pair towards Cost



## Cost curves of 4 Passenger Categories


(a) departing=ride'+dwell' +source

(c) changing $=$ ride + transfer

(b) through=ride+dwell

(d) arriving =ride + sink

## Results: Flow * Duration Rectangle Representation



## Results: 7 to 8am: 5\% Proportional Delay: Numbers

Table: Scalability of our Integer Linear Programming Model with necessary Constraints and the Derived Objective Function

|  |  | model |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| trains | rows | model <br> col- <br> umns | solver <br> time | passenger <br> time | missed <br> transfer |  |
| types |  |  | $(\#)$ | $(\#)$ | $(\#)$ | $(\mathrm{s})$ |

## Results: 7 to 8am: 5\% Proportional Delay: Bar Graphs


(e) Linear, Passenger Flows $\geq 50$

(f) Non-Linear, Passenger Flows $\geq 0$

## Results: 7 to 8am: 5\% Proportional Delay: Linear, Passenger Flows $\geq 50$ : Histograms



## Results: 7 to 8am: 5\% Proportional Delay: Non-Linear, Passenger Flows $\geq 0$ : Histograms




## Conclusions

- defined and implemented remapping, reflowing, retiming \& iterations
- reflowing
- extended PESP (retime) to FAPESP (reflow + retime)
- auto-generated all current local passenger flows
- recommended some better data collection procedures
- retiming
- defined all necessary constraints \& found \& added some more (cycles) to solve model fast
- defined stochastic passenger time goal function
- auto-generated first national timetable with full goal function $=$ expected passenger time
- respects (ride, dwell, transfer, headway)-minimum times
- is robust (optimally for passengers)
- reduction of passenger time with $\pm 7 \%$, mind current assumptions:
- primary delay $=5 \%$ of minimum-time, everywhere
- zone-to-station-(overly?)-diffused passenger streams


## Future Work

- further verification with new data
- measured (place, train)-dependent delays i.o. averaged one
- asymmetric station-OD?
- add spreading measure for alternative OD-routes and evaluate effect
- allow boundary timing conditions at frontiers/sub-zones
- output TPP problems to platformer
- guarantee/increase chance on feasibility
- add station capacity constraints to retiming
- add constraints avoiding simultaneous arrival/departure of train pair that has to cross in station
- adapt platformer so that it optimises for passengers i.o. maximising \# trains platformed


## Questions

- Your Questions?
- www.LogicallyYours.com/Research/
- sels.peter@gmail.com
- My Questions:
- Is it best to use primary delays from the old timetable or to just assume them to be relative to minimum times?
- If relative, what is the best (average(?)) percentage to assume for primary delays w.r.t minimum times?

