#### Timetabling for Passengers

# Peter Sels<sup>1,2,3</sup>, Thijs Dewilde<sup>1</sup>, Dirk Cattrysse<sup>1</sup>, Pieter Vansteenwegen<sup>1</sup>

<sup>1</sup>Katholieke Universiteit Leuven, Centre for Industrial Management/Traffic & Infrastructure, Celestijnenlaan 300a, 3001 Heverlee, Belgium

<sup>2</sup>Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium e-mail: sels.peter@gmail.com, corresponding author

> <sup>3</sup>Infrabel, Department of Rail Access, Frankrijkstraat 91, 1070 Brussels, Belgium

> > November 25, 2013



э

・ロト ・聞 と ・ 聞 と ・ 聞 と

# Table of Contents

- Business Problem
  - Task
- 2 Context: Four Major Railway Planning Problems
- Oyclic Timetabling
  - Previous Research Milestones
  - Usual Goal Functions?
  - Our Approach
- 4 Solution Process Flows
- 5 Remapping
- 6 Reflowing
  - Routing Algorithms
- 7 Retiming
  - Stochastic Action Model
  - Stochastic Goal Function: Expected Passenger Transfer Time
  - Grouping per Subsequent Action-Pair
  - Grouping per Subsequent Action-Pair towards Cost
- 8 Results





э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト



#### Belgian Infrastructure Management Company: Infrabel:

"Optimize Passenger Train Service, Minimizing Passenger Travel Time"

#### Goals:

Increased: Passenger Satisfaction, Robustness, Capacity Usage, Transfer Efficiency

#### Fixed:

Infrastructure, Train Lines, Halting Pattern, Delay Probabilities

#### Variable:

Timing: Supplement Times at every Ride, Dwell, Transfer Action

#### Specifics:

One Busy Day, Morning Peak Hour





#### Task Notes

- Demand by Infrastructure Company, not main operator: NMBS
- Robustness against Delays necessitates Stochastic Approach.
- Minimization Passenger Time implies
  - knowledge of local passenger flows
  - specific, automatic trade-off between robustness and speedy service.
- Single criterium where all terms have same units: time.

#### Goal Function:

Stochastic Total Expected Passenger Travel Time:  $GF(E) = \sum_{e \in E} f_e d_e$ 

#### Constraints:

Periodicity, Symmetry, Regularity, Minimum Action (Ride, Dwell, Transfer) Times, Minimum Headway Times, Macro Approach.



э

・ロト ・ 雪 ト ・ ヨ ト ・

### Four Major Railway Planning Problems

- Line Planning (operator)
- Timetabling & Platforming (infrastructure company)
  - national timetable planning
  - solving generated train platforming and routing problem (TPP) for each station
- Material Planning (operator)
- Personnel Planning (operator)



# Cyclic Timetabling: Previous Research Milestones

- Periodic Event Scheduling Problem (PESP): Serafini & Ukovich: 1989
- Constraint Programming Model (CADANS): Schrijver & Steenbeek: 1993
  - $\bullet~\mathsf{PESP}$  constraints  $\to$  sometimes solves, sometimes doesn't
  - goal function: none
- Cyclic Periodicity Formulation (CPF): Nachtigall: 1994
  - Based on process times & (orthogonal) cycle basis
- Application of PESP & CPF on part of Dutch passenger train system: Peeters: 2003
  - CPF finds better solutions
  - CPF solves quicker since edge based
- First optimised timetable in practice: Liebchen: 2008
  - Berlin Underground: 37 trains
  - goal function: minimise for combo of operational cost, dwell-times & some transfer-times
  - saved one metro



### Goal Function Pitfalls?

- too simple
  - none
    - e.g.: due to no clear/'conflicting' specification of stakeholder(s)
  - incomplete: covers only some aspects
    - e.g.: focus on minimizing dwell times only
    - e.g.: focus on only *some* transfers
- too complex: multi-stakeholder
  - $\bullet\,$  e.g: heterogeneous units: somehow 'adding' operational cost and some robustness measure  $\to$  unbalanced
  - $\bullet\,$  e.g: pareto optimization  $\rightarrow\,$  not a unique 'best' solution
- too artificial: indicated by magic constants
  - in goal function: e.g.: in adding apples and pears
  - in constraints: e.g.: add buffer time up to 5% of train duration (to compensate for incomplete goal function)



# Goal Function = Expected Passenger Time. Why?

#### • as simple as possible

- passengers are stakeholder nr 1
- expected travel time is their concern nr 1
- including expected delays automatically trades off between: efficient yet robust service
- complete enough: covers all:
  - train actions
  - passenger actions (e.g.: all potential transfers)
- no artificial constraints:
  - weighted with passenger flows, naturally
- evaluate secondary stakeholders
  - (expected) idle time of material  $\rightarrow$  operational cost



Timetabling for Passengers Solution Process Flows

#### FAPESP: Two Phased

#### FAPESP



Figure: Two Phased implies Iterations



# Origin-Destination (OD) Matrix

#### Wanted

- station to station OD-matrix
- Only Available
  - ticket OD-Matrix currently formulated in zones i.o. stations
  - currently only station/zone passenger ratios for departing passengers
  - currently no station/zone passenger ratios for arriving passengers
  - ticket OD-Matrix currently symmetric
    - $\bullet~$  full day periodicity  $\rightarrow~morning\text{-evening}$  symmetry
    - morning only: towards Brussels-inwards-outwards symmetry
- Use as follows
  - take ticket sales from zone to zone
  - diffuse over origin stations according to Entering Passengers
  - diffuse over destination stations according to Entering Passengers
  - cannot fix symmetry (asymmetric information lost)



#### Add to Graph: Ride, Dwell





#### Add to Graph: Transfers





## Potential Transfers

#### • 'Guaranteed Transfers'

- listed by humans
- criterium = human judgement of 'important'
- about a hundred?
- Potential Transfers
  - automatically generated
  - criterium = whenever two trains stop in same station, irrespective of flow and timing (both are still unknown)
  - > 20000
  - $\bullet$  all considered in reflowing & retiming, or in retiming: only the ones with e.g.:  $\geq$  50 people transferring



#### Graph for Reflowing: Add Source & Sink





<ロ> (四) (四) (三) (三) (三)

# Graph for Reflowing: All Edge Types





# Routing Algorithms & Results

- Dijkstra: hours
- Modified Dijkstra (includes Priority Queue, single thread): 1 hour
- Modified Dijkstra (includes Priority Queue + OpenMP (8 cores) + OpenMPI (2 machines)): 4 min
- Johnson: to consider



### Reflowing = Deciding on Rectangle Heights



(a) Original Schedule





э

### Retiming = Deciding on Rectangle Widths



(c) Original Schedule





э

#### Add to Graph: Knock-Ons





<ロ> (四) (四) (三) (三) (三)

#### Add to Graph: Turn-Around





(日) (個) (目) (目) (目) (目)

## Add to Graph: Symmetry (Optional)





(日) (個) (目) (目) (目) (目)

## Graph for Retiming: All Edge Types





<ロ> (四) (四) (三) (三) (三) (三)

### Graph for Retiming: Basic Cycles





#### Graph for Retiming: Linear Combination of Cycles





<ロ> (四) (四) (三) (三) (三)

# Looks a lot like Miro, right?





æ

<ロト <回ト < 注ト < 注ト

Timetabling for Passengers Retiming Stochastic Action Model

#### Action: Negative Exponential Delay Distribution



æ

Timetabling for Passengers Retiming Stochastic Action Model

#### In-Time and Over-Time

|                                     | In-Time                      | Over-Time                             |
|-------------------------------------|------------------------------|---------------------------------------|
| probability                         | $\int_0^{D_0} p_a(x) dx$     | $\int_{D_0}^{D_1} p_a(x) dx$ dec.     |
| inc./dec. in $D_0$                  | inc.                         | dec.                                  |
| expected time                       | $\int_0^{D_0} p_a(x) D_0 dx$ | $\int_{D_0}^{D_1} p_a(x) D_1 dx$ dec. |
| inc./dec. in $D_0$                  | inc.                         | dec.                                  |
| departing = ride' + dwell' + source |                              | $\checkmark$                          |
| through = ride + dwell              | $\checkmark$                 |                                       |
| changing = ride + transfer          | $\checkmark$                 | $\checkmark$                          |
| arriving = ride + sink              | $\checkmark$                 |                                       |



Retiming Stochastic Goal Function: Expected Passenger Transfer Time Stochastic Goal Function: Expected Passenger Transfer

Time

Timetabling for Passengers



Figure:  $D_0$  is introduced supplement,  $D_1 > D_0$  is delta time of next chance action. Curve maps planned time to expected time.



э

(日)、

## Grouping per Subsequent Action-Pair

- departing = ride' + dwell' + source
- through = ride + dwell
- changing = ride + transfer
- arriving = ride + sink





э

(日)、

Timetabling for Passengers Retiming Grouping per Subsequent Action-Pair

#### Looks a lot like Mondriaan, right?





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▲

Timetabling for Passengers

#### Retiming

Grouping per Subsequent Action-Pair towards Cost

#### Grouping per Subsequent Action-Pair towards Cost





< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Timetabling for Passengers

Retiming

Grouping per Subsequent Action-Pair towards Cost

#### Cost curves of 4 Passenger Categories



#### Results: Flow \* Duration Rectangle Representation





### Results: 7 to 8am: 5% Proportional Delay: Numbers

Table: Scalability of our Integer Linear Programming Model with necessary Constraints and the Derived Objective Function

|           |        | model  | model  | solver | passenger | missed      |
|-----------|--------|--------|--------|--------|-----------|-------------|
| train     | trains | rows   | col-   | time   | time      | transfer    |
| types     |        |        | umns   |        | reduction | probability |
|           | (#)    | (#)    | (#)    | (s)    | (%)       | (%)         |
| IC        | 43     | 18747  | 13361  | 50     | 10.73     | 2.95        |
| IC IR     | 82     | 48267  | 33035  | 449    | 12.38     | 3.11        |
| IC IR L   | 186    | 102652 | 68504  | 2426   | 10.03     | 2.31        |
| IC IR L P | 203    | 225132 | 158860 | 3706   | 7.12      | 2.43        |



Timetabling for Passengers Results

#### Results: 7 to 8am: 5% Proportional Delay: Bar Graphs





(f) Non-Linear, Passenger Flows  $\geq 0$ 

(日)、



#### Timetabling for Passengers Results

# Results: 7 to 8am: 5% Proportional Delay: Linear, Passenger Flows $\geq$ 50: Histograms





(日) (同) (日) (日)

#### Timetabling for Passengers Results

# Results: 7 to 8am: 5% Proportional Delay: Non-Linear, Passenger Flows $\geq$ 0: Histograms





(日) (同) (日) (日)

## Conclusions

- defined and implemented remapping, reflowing, retiming & iterations
- reflowing
  - extended PESP (retime) to FAPESP (reflow + retime)
  - auto-generated all current local passenger flows
  - recommended some better data collection procedures
- retiming
  - defined all necessary constraints & found & added some more (cycles) to solve model fast
  - defined stochastic passenger time goal function
  - $\bullet\,$  auto-generated first national timetable with full goal function  $=\,$  expected passenger time
    - respects (ride, dwell, transfer, headway)-minimum times
    - is robust (optimally for passengers)
  - $\bullet\,$  reduction of passenger time with  $\pm7\%,$  mind current assumptions:
    - primary delay = 5% of minimum-time, everywhere
    - zone-to-station-(overly?)-diffused passenger streams



### Future Work

- further verification with new data
  - measured (place, train)-dependent delays i.o. averaged one
  - asymmetric station-OD?
- add spreading measure for alternative OD-routes and evaluate effect
- allow boundary timing conditions at frontiers/sub-zones
- output TPP problems to platformer
  - guarantee/increase chance on feasibility
    - add station capacity constraints to retiming
    - add constraints avoiding simultaneous arrival/departure of train pair that has to cross in station
  - $\bullet$  adapt platformer so that it optimises for passengers i.o. maximising # trains platformed





- Your Questions?
  - www.LogicallyYours.com/Research/
  - sels.peter@gmail.com
- My Questions:
  - Is it best to use primary delays from the old timetable or to just assume them to be relative to minimum times?
  - If relative, what is the best (average(?)) percentage to assume for primary delays w.r.t minimum times?

